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ABSTRACT 

When developing production software for fixed-point 
Engine Control Units (ECUs), it is important to consider 
the transition from floating-point to fixed-point 
algorithms. Systems engineers frequently design 
algorithms in floating-point math, usually double 
precision. This represents the ideal algorithm behavior 
without much concern for its final realization in 
production software and hardware. Software engineers 
and suppliers in mass production environments, 
however, are concerned with production realities and 
often need to convert these algorithms to fixed-point 
math for their integer-only hardware.  

A key task is to design scale factors that maximize code 
efficiency by minimizing the bytes used, while also 
minimizing quantization effects such that the fixed-point 
algorithms match the floating-point results within an 
acceptable numerical margin. This floating- to fixed-point 
conversion task is tedious, labor intensive, error-prone, 
and often requires multiple iterations between system 
and software engineers. 

Model-Based Design simplifies fixed-point development 
by providing tools and workflows that help the 
conversion process. System engineers doing on-target 
rapid prototyping for fixed-point ECUs often benefit from 
automated scaling and workflow assistance to support 
their initial fixed-point design. Production software 
engineers benefit from automated scaling as well, but 
they also require fine grain control over fixed data 
specification in their modeling environment to work with 
accumulator word sizes and target-specific 
optimizations. In addition to providing automated scaling 
and fine grain data modeling features, Model-Based 
Design capabilities for fixed-point verification and 
validation continue to evolve. One example is bit-
accurate, fixed-point simulation with automated 
comparison to embedded software results using 
processor-in-the-loop testing. 

This paper presents Model-Based Design capabilities 
and tools that support development and verification of 
fixed-point ECU software used in mass production 
vehicles. 

 

INTRODUCTION 

Model-Based Design provides executable specifications, 
automatic code generation, and automated verification 
and validation tools. These technologies can be used to 
accelerate software development for any embedded 
system. Additional engineering effort is needed to 
produce the optimized designs and efficient code 
needed to satisfy the resource constraints of embedded 
microprocessors used in mass production. Thus, it is 
important to have processes and guidelines that yield 
optimal fixed-point code.  

This paper presents recently developed technologies 
and industry best practices for developing fixed-point 
code using Model-Based Design.  

The topics presented are: 

� Developing the system model 
� Preparing model and data for conversion 
� Floating- to fixed-point conversion 
� Generating optimized code 
� Performing verification and validation 
 
DEVELOPING THE SYSTEM MODEL 

A case study based on a well-known fault tolerant fuel 
system demonstration model (shown in Figure 1) will 
help illustrate the development and verification of fixed-
point ECU software using Model-Based Design. 
Because this model has been described in previous 
literature [1], it will not be detailed here. However an 
overview is provided to explain the model structure and 
purpose. 



 

Figure 1: System model. 

The fuel control system model has three main 
components: a controller model for the ECU, a plant 
model for the engine gas dynamics, and several 
sensors. The engine model consists of air-fuel intake 
dynamics comprising both the throttle body and intake 
manifold. The engine model has two inputs, engine 
speed and throttle angle; and three outputs, sensed 
oxygen, manifold pressure (MAP), and air-fuel ratio.  

The plant model is developed using continuous time 
blocks. A 10 millisecond (10 ms) sample rate is required 
for the fuel rate control system algorithm.  

A closed-loop simulation can be performed using the 
plant and controller, plus input stimulus and output 
scopes. The controller must be tolerant to sensor failure 
faults. Faults can be inserted using manual switches. By 
toggling the input signals to nominal or fault values, 
model developers can examine the effect of the fault on 
controller performance and assess the controller’s 
tolerance to faults. 

The control system consists of a state machine and 
block diagrams. The state machine detects faults and 
establishes a fueling mode. Block diagrams model the 
sensor correction and fault redundancy logic, intake 
airflow estimation and correction logic, and a fuel rate 
calculation that concludes with a software limit on the 
fuel rate output command. The control system model is 
shown in Figure 2. 

 

Figure 2: Control system model. 

The control logic diagram has three states for each input 
sensor: warm up, normal, and failure. The criteria for 
transitioning between states are established via 
threshold parameters for each sensor. A sensor failure 
counter is used to track the total number of sensor 
failures.  

This counter is then used to determine a fueling mode. A 
low fueling mode is used if there are no sensor failures; 
a rich fueling mode is used for one sensor failure; and a 
disabled mode is used for two or more failures. Figure 3 
shows the main portions of the state machine. 

 

Figure 3: Control logic state machine. 



The intake airflow estimation and correction logic shown 
in Figure 4 includes feedforward and feedback control 
algorithms. Table lookups provide pumping constants 
and rates.  

 

Figure 4: Closed-loop block diagram. 

The system model is then simulated and time response 
results are collected for metered fuel and air/fuel ratio as 
shown in figure 5. 

  

Figure 5: System response. 

This fuel system model is typical of most models initially 
developed using Model-Based Design. These models 
address the behavioral or functional requirements but 
are not necessarily well suited for implementation on an 
embedded system for a variety of reasons, such as:  

� Continuous time representation of blocks is used 
instead of discrete. 

� Simulation results are calculated using double 
precision real data types instead of integer or fixed-
point types. 

� Interfaces between components such as the 
controller, plant, and sensors are not well specified 
or locked down.  

Some organizations try to address these issues by 
forcing the system developer to consider implementation 
aspects during initial algorithm design. In others, system 
designers are free to explore and optimize behavioral 
designs using their preferred modeling style.  

PREPARING MODEL AND DATA FOR 
CONVERSION 

After a floating-point behavioral model is developed, it 
must be prepared for implementation on a fixed-point 
embedded microcontroller. 

Some preparation tasks are needed even if the code is 
to be deployed code on a floating point processor. For 
example, the embedded system will run in discrete time, 
so continuous time blocks used for the embedded 
algorithm should be replaced by discrete blocks. It is 
possible to automate this process using conversion 
utilities. Rate transition blocks can also be used to 
convert the continuous-time signals to discrete-time 
signals sampled at 10ms, as required by the controller. 
Note that the effect of sampling on system performance 
and stability must also be analyzed. 

Preparing a model for conversion to fixed-point math 
requires several steps outlined in the following sections. 

CREATE INITIAL REFERENCE DATA 

Before beginning any model conversion task, create 
reference signal data for your floating point, behavioral 
model. These results can be used later for equivalence 
comparisons with the fixed-point model and generated 
code. The results shown in Figure 5, for example, will be 
used for equivalence testing of the fuel system 
controller. 

REPLACE UNSUPPORTED BLOCKS 

Identify and replace blocks that do not support fixed-
point types. This includes replacing continuous-time with 
discrete-time blocks. Start by reviewing a list of data 
types supported by each block, as shown in Figure 6.  

For models with Embedded MATLAB® functions, 
choose those that support fixed-point. There are 
hundreds of functions and blocks that support fixed-point 
implementation, including all the functions an engineer 
would typically use in embedded algorithm design. 



 

Figure 6: Block data type support table. 

SET UP SIGNAL LOGGING 

Logging signals of interest during simulation is important 
because logged signals are used for analysis and 
comparison in other tasks. Model inputs and outputs are 
commonly logged  (as was done with the initial reference 
data) but it may be helpful to log other signals to help 
with conversion to fixed-point.  

Engineers no longer need to specifically add blocks or 
name signals to log data. It is now possible to log 
unnamed signals or log all data from a selected portion 
of the model subsystem hierarchy as shown in Figure 7. 

 

Figure 7: Logging fixed-point data. 

 

SPECIFY TARGET HARDWARE CHARACTERISTICS 

The model simulation behavior and code generation 
outputs are determined by target hardware 
characteristics. Specifying the correct word lengths for 
char, int, long, and other attributes unique to a particular 
embedded microprocessor is needed to avoid producing 
incorrect results during simulation or code generation. 

CHECK MODEL SUITABILITY FOR PRODUCTION   

Automated model checks should be used to inspect the 
model’s suitability for production code deployment as 
shown in Figure 8. These checks cover a broad range of 
topics such as model upgrades and library links.  

Some checks, such as “identify questionable fixed-point 
operations” and “check hardware implementation”, are 
crucial for fixed-point development. Additional checks 
can be run, including checks based on the updated 
MAAB guidelines [2] or safety related standards such as 
IEC 61508 [3]. 

 

Figure 8: Model checks can determine a model’s suitability for 
production. 

CREATE SIMULATION REFERENCE DATA  

If the model has changed or additional signals are 
logged, create new reference signal data for the floating-
point model. These results will be used for automated 
scaling and equivalence comparisons with the fixed-
point design and automatically generated code. 

PREPARE FOR DATA TYPING AND SCALING 



Some models are easier to convert than others. 
Differences in the level of effort required are often 
related to how blocks in the model were configured for 
data type inheritance and other propagation settings.  
During the initial design, heavy use of data propagation 
speeds prototyping and allows for fast analysis and 
design iterations. As the project moves closer to 
production, however, it may be helpful to do less 
automated propagation and more fine grain data design 
for the individual data types and scaling options.  

To make models easier to convert:  

� Remove output data type inheritance, especially in 
cases that lead to data type propagation conflicts. 

� Relax input data type settings or constraints that 
might lead to data type propagation errors. 

� Ensure state charts have strong data typing with 
Simulink®. 

� Specify block minimum and maximum values for 
block output and parameter minimum and maximum 
values, if known. 

 
FLOATING- TO FIXED-POINT CONVERSION 

It is possible to examine each block and manually scale 
it according to the specified range and desired precision. 
The new data type assistant feature within the Block 
Parameter dialog box facilitates this approach by 
calculating appropriate fixed-point scaled data types 
based on specified minimum and maximum values.  
Figure 9 shows this dialog box for a Sum block. 

 

Figure 9: Data Type Assistant for a Sum block. 

During the scaling process, in addition to the input and 
output signals, engineers should consider the 
intermediate calculations that use an accumulator. In 
previous releases, blocks used the user-specified output 
data type to perform all operations. In some cases, this 
behavior could cause precision loss and saturation 
during intermediate operations. In recent releases, the 
addition, subtraction, and summation blocks use an ideal 
accumulator data type based on the hardware 
characteristics when performing intermediate operations. 
Consequently, these blocks now produce more precise 
results and code is generated with less saturation 
checks. 

Another approach to manual scaling uses the Fixed-
Point Tool and its automatic scaling feature to convert 
from floating- to fixed-point. It is possible to lock down 
each block and prevent it from being modified by the 
auto scaling tool. This allows you to use automatic 
scaling in conjunction with individually scaled blocks. 
The autoscale function computes the scaling information 
based on the individually scaled blocks and reference 
data prepared for the floating-point model. Engineers 
can then accept or reject the proposed scaling for each 
signal.  

It is also possible to perform data type override and 
compare double precision results to the scaled fixed-
point results. This allows a project to use one model for 
both floating- and fixed-point design. Another technique 
to target one model for floating- or fixed-point designs is 
to substitute different data dictionaries as previously 
described [4]. 

In addition to comparison plots, the Fixed-Point Tool 
also records the number of overflows and saturations 
that occurred. Figure 10 shows the tool and its proposed 
scaling for the Fuel System model.  

The Sum block is shown to have reached its overflow 
saturation check 7664 times during the simulation. 
Hence, the automatic scaler proposes to change the 
fraction length from 11 to 10 bits to provide the extra 
range needed with maximum precision. 

 

Figure 10: Fixed Point Tool for automatic scaling. 



 

GENERATING OPTIMIZED CODE 

Prior to generating code, it is advisable to disable the 
signal logging used during the fixed point conversion. 
This will avoid declaring extra signal memory in the 
generated code. 

Model Advisor checks for Real-Time Workshop® 
Embedded Coder software should also be run. This will 
check many code efficiency improvement areas such as: 

� Identifying blocks that generate expensive saturation 
and rounding code. 

� Identifying questionable fixed-point operations. 
� Inspecting lookup tables to ensure they are properly 

spaced for maximizing code efficiency. 
 
Producing code from an optimized design is a 
straightforward step of selecting a deployment target 
and generating code. The production code targeting 
options range from the default ANSI/ISO C, to target 
optimized algorithm code, to a highly customized 
deployment target that includes calls to device drivers. It 
is also possible to target middleware and abstraction 
layers such as AUTOSAR™.   

For ANSI/ISO C, an Embedded Real-Time Target (ERT) 
option exists that is optimized for fixed-point code as 
shown in Figure 11. 

 

Figure 11: ANSI-C optimized fixed-point target using Real-Time 
Workshop® Embedded Coder™. 

Other than word sizes and other target characteristic 
settings, this code is portable and can be deployed on 
any target with the specified word sizes.   

For target optimized code, a number of options exist. 
The first is to have the generated code call an existing C 
function at the appropriate point within the algorithm. 
One method A second option is to use Legacy Code 
Tool in Simulink. 
 
Another newer option is to replace generated code math 
functions and operators with target-specific versions. 
This is done using Target Function Libraries (TFL). TFL 
requires the end user to create a table mapping default 

functions and operators to their target specific 
equivalents. The TFL is then available as a code 
generation option. Figure 12 shows the Infineon® 
TriCore® TFL as an example. 
 
 

 
 
Figure 12: Selecting optimized Target Function Libraries. 

Once a TFL is selected, the generated code will 
incorporate the replacement items seamlessly. See 
Figure 13 for a comparison of ANSI-C and TriCore 
optimized code for fixed-point add of 32-bit integers with 
saturation logic. Not only is the code smaller, the 
execution time also decreases dramatically.  
 
In one example, the optimized code ran faster than 
ANSI-C code by a factor of 17. Of course, this code is no 
longer portable. However, it is easy to change the TFL 
choice in your model to target another device. 
 

 
 
Figure 13: ANSI-C and TriCore optimized fixed-point code using TFL 



The final deployment option involves building a complete 
application involving algorithms, device drivers, and 
operating system software. Several options exist for this 
process: using The MathWorks™ target products, using 
third-party commercial target products, or building a 
custom target with documented procedures and APIs.  

Commercially available compiler tool chain and 
processor target support packages [6] should be 
reviewed before building a custom target. 

PERFORMING VERIFICATION AND VALIDATION 

The reference data collected from the floating-point 
behavioral model can be reused for equivalence testing 
throughout the development process. It is first used to 
compare the results of fixed-point design to the original 
floating-point model. The comparison is done frequently 
and it is important to note that code generation is not 
needed during this step since bit-accurate fixed-point 
simulation is provided by Simulink® Fixed Point™. 
 
The next use may be in software-in-the-loop (SIL) 
testing. This occurs on the host computer and makes it 
easy for the generated code to run with the original plant 
model or test harness. The generated code may include 
legacy code. Target-specific code, however, cannot be 
tested since it cannot execute on the host computer. 
 
Testing code on the target processor is done using 
processor-in-the-loop (PIL) testing. PIL testing co-
simulates the code (in this case actual object code) on 
an Instruction Set Simulator or embedded hardware with 
the original plant model or test harness in Simulink.  
 
The MathWorks offers a variety of link products that 
automate PIL testing using commercial Integrated 
Development Environments (IDEs). It is possible to run 
PIL testing on processors supported by these IDEs. 
 
Model verification using analysis instead of simulation 
can also be done using Simulink® Design Verifier™ 
software, which automatically generates test cases 
based on structural coverage criteria and enables formal 
proofs and analysis. 
 
Code verification through analysis instead of simulation 
can also be done using Polyspace™ products, which 
formally analyze code to identify common code defects 
such as fixed-point overflow, divide-by-zero, and array 
out of bounds checks. 
 
CONCLUSION 

Model-Based Design with automatic code generation is 
increasingly important advantageous in automotive 
software development. Advances in fixed-point tools are 
occurring rapidly. Software engineers need to stay 
current on the technology and understand how to best 
apply it for mass production environments. This paper 
provided an update on these topics.  
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