
 Abstract-- This paper is a synthesis of the work done at 
Institut de Recherche d’Hydro-Québec for modeling and 
simulating wind power plants for power system studies.  The 
electromagnetic transient model of a wind generator using a 
doubly-fed induction generator is presented. Modeling 
techniques for simulating large wind power plants are 
described. Model validation using field measurements and 
simulation study are presented. Real-time simulation of 25 
aggregate wind power plants into the series-compensated 
Hydro-Québec power systems is finally presented and 
illustrates the feasibility of using large-scale electromagnetic 
transient simulations for power system studies. 

 
Index Terms—Wind generator, wind power plant, 

modeling, model validation, simulation, real-time simulation.  

I.  NOMENCLATURE 

WPP     wind power plant 
WG      wind generator 
IREQ     Institut de Recherche d’Hydro-Québec 
DFIG     doubly-fed induction generator 
POI      point of interconnection 
EMT     electromagnetic transients 
MATLAB/SPS MATLAB/SimPowerSystems  
HVDC     high voltage direct current 
WFMS     wind farm management system 

II.  INTRODUCTION 

Y
M

 2015 Hydro-Québec will be carrying about 4000 
W of wind power over its transmission system. 

Integrating WPPs generation under optimal conditions 
requires extensive modeling and simulation. Modern WGs 
use sophisticated conversion systems including power 
electronics and advanced control systems. The diversity of 
actual WG technologies, the rapidity with which these 
technologies are developing and the difficulties to obtain 
technical data from WG manufacturers due to intellectual 
properties have for consequence that there is not any 
standard WG models for power system studies. 
Furthermore, WGs are generally grouped together to form 
WPPs. A typical large WPP may count several tens of WGs 
connected to a collector system comprising overhead lines 
and cables. Due to power computation limitations, it 
remains unrealistic to simulate each WG of each WPP of a 

                                                           

This paper was originally published at the "9th International Workshop on Large-Scale Integration of Wind Power 
into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants." 

http://www.windintegrationworkshop.org/previous_workshops.html

Large-Scale Real-Time Simulation of Wind 
Power Plants into Hydro-Québec Power System 

Richard Gagnon, Gilbert Turmel, Christian Larose, Jacques Brochu, Gilbert Sybille, Martin Fecteau 

power system. Simplified or aggregate models of WPPs are 
thus required for power system studies. A major research 
project on WPP modeling for Hydro-Québec power system 
studies was therefore undertaken at IREQ. 

R. Gagnon , G. Turmel, C. Larose, J. Brochu, G. Sybille,  are with 
IREQ Varennes, QC Canada J3X 1S1 (email: gagnon.richard@ireq.ca) 

M. Fecteau is with Hydro-Québec TransÉnergie, Montréal QC Canada 
H5B 1H7. 

The project objectives were: 
 To develop a model of a type-III WG (DFIG) 

for EMT studies 
 To validate the model with field measurements 
 To develop or validate methods to form 

aggregate models of WPPs for load flow, 
stability and EMT studies 

 To validate the aggregate model of an actual 
WPP with field measurements 

 To develop methods for large-scale EMT 
simulation of WPPs. 

This paper is a synthesis of the work done in this project. 
Most of the topics presented here have already been 
published or are submitted for publication. Nevertheless, 
none has been published on the integration of the diverse 
methods and results issuing from this project for large-scale 
real-time simulation of WPPs in the EMT domain. This last 
achievement of the project is presented at the end of the 
paper. 

Knowing that a huge number of simulations would be 
required to reach the project objectives we chose Hypersim 
simulator with MATLAB/SPS models of WGs as simulation 
environment. Hypersim is a fully digital simulator 
developed by Hydro-Québec for real-time and off-line 
simulation [1]. Hypersim can import the code generated 
from a MATLAB/Simulink model through the MATLAB 
Real Time Workshop (RTW) [2]. 

The paper is divided into four sections. The 
MATLAB/SPS models of WGs and the modeling 
techniques for simulating large WPPs with Hypersim are 
respectively presented in sections III and IV. Section V 
presents model validation. This includes validation of type-
III WG and WPP models using on-line disturbance 
monitoring, validation of aggregation techniques for WPP 
modeling and generic equivalent collector system 
parameters for large WPPs. The last section presents the 
real-time simulation of 25 generic WPPs connected to a 
Hypersim 643-bus (3-phase bus) model of the Hydro-
Québec power system. This simulation illustrates the 
feasibility of using EMT large-scale simulation for 
integrating wind power and to study possible interactions 
between series-compensated power system, real HVDC 
controls, and massive wind power generation. 

B 
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III.  WIND GENERATOR MODEL 

The Matlab/SPS model of the type-III WG is shown in 
Fig. 1. The AC/DC/AC converter is divided into two 
components: the rotor-side converter (Crotor) and the grid-
side converter (Cgrid). Crotor and Cgrid are Voltage-
Sourced Converters that use forced-commutated power 
electronic devices (IGBTs) to synthesize an AC voltage 
from a DC voltage source. A capacitor connected on the DC 
side acts as the DC voltage source. A coupling inductor L is 
used to connect Cgrid to the grid. The three-phase rotor 
winding is connected to Crotor by slip rings and brushes 
and the three-phase stator winding is directly connected to 
the grid. 

The power captured by the wind turbine is transmitted to 
the drivetrain modeled as a two-mass system. The turbine 
model is illustrated in Fig. 2. Turbine and drivetrain 
parameters are given in [3]. The drivetrain mechanical 
power is converted into electrical power by the induction 
generator and it is transmitted to the grid by the stator and 
the rotor windings. The control systems in Fig. 3 to 5 
generate the pitch angle command and the voltage command 
signals Uctrl_rotor and Uctrl_gc for Crotor and Cgrid 
respectively. These output signals are used to control the 
speed of the generator, the DC bus voltage and the reactive 
power at the grid terminals. 
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Fig. 1. Matlab/SPS model of the type-III WG 

A.  Crotor control system 

The rotor-side converter controls the generator speed and 
the reactive power measured at the grid terminals. The 
speed regulator is illustrated in Fig. 3. The pitch and the 
pitch compensation control loops are also illustrated in the 
same figure. See [3] for more details. 

The speed is controlled in order to follow a pre-defined 
power-speed characteristic, named tracking characteristic. 
The actual power Pmeas is measured at the grid terminals of 
the WG and the corresponding speed of the tracking 
characteristic is used as the reference speed for the speed 
regulator. The output of the regulator is the electromagnetic 
torque (Tem cmd) that must be generated by the generator.  

Fig. 4 illustrates control of the electromagnetic torque 
and of the reactive power. The d-axis of the rotating 
reference frame, used for d-q transformation, is aligned with 
the positive-sequence of stator voltage using a phase-locked 
loop. The reference torque (Tem cmd) is divided by a scaled 

value of the q-axis flux of the generator in order to obtain 
the reference rotor current Id_ref that must be injected in the 
rotor by converter Crotor. The actual Id component is 
compared to Id_ref and the error is reduced to zero by a 
current regulator. The output of this current controller is the 
voltage Vdr that will be generated by Crotor. 

As for the reactive power, it is measured at the grid 
terminals of the WG and it is compared to its reference 
value (Qref). The error is reduced to zero by an integral 
regulator (var regulator). Qref is the output of the wind farm 
management system (WFMS) that regulates the voltage at 
the POI of the WPP and the power system. The WFMS is 
not described in this paper. The output of the var regulator is 
the reference voltage Vref at the grid terminals of the WG. 
The actual voltage is regulated to its reference value Vref by 
an integral regulator. The output of this regulator is the rotor 
current Iq_ref that must be injected in the rotor by converter 
Crotor. The same current regulator as for the 
electromagnetic torque control is used to regulate the actual 
Iq component to its reference value. The output of the 
current controller is the voltage Vqr that will be generated 
by Crotor. The 3-phase voltage (Uctrl_rotor) of Crotor is 
obtained from a d-q to ABC transformation. 

 

turb

 
Fig. 2. Turbine model 

 
Fig. 3. Speed regulator, pitch control, and pitch compensation control loops 
 

 
Fig. 4. Control system for rotor-side converter 

B.  Cgrid control system 

The converter Cgrid is used to regulate the voltage of the 
DC bus capacitor and to keep grid converter reactive current 
to zero. The control system, illustrated in the Fig. 5 consists 
of a DC voltage regulator and a current regulator. The 
rotating reference frame used for d-q transformation is the 
same as for Crotor control system. The output of the DC 
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voltage regulator is the reference current Id_ref for the 
current regulator. The current regulator controls the 
magnitude and phase of the voltage generated by converter 
Cgrid (Vgc) from the Id_ref produced by the DC voltage 
regulator and Iq_ref = 0. 

 
Fig. 5 Control system for grid-side converter 

IV.  MODELING TECHNIQUES FOR SIMULATING 
LARGE WWPS 

A detailed EMT model of WPP, with all WGs 
represented with the collector system, is required to validate 
any aggregate model of WPP. 

However, using traditional EMT simulation tools, it is 
unrealistic to simulate each WG of a large WPP since 
simulation time becomes extremely long as the network size 
and number of WGs increase. On the other hand, progress 
in simulator and supercomputer now allow real-time 
simulation of large networks using EMT models. 

IREQ’s real-time simulation expertise has been used to 
develop efficient modeling techniques for WPPs. As a 
result, a large WPP can now be simulated in detail, with 
each WG individually represented, in real-time or close to 
real-time. The resulting EMT simulation, performed on a 
parallel supercomputer, is fast enough to fulfill simulation 
needs in the time frame of EMT and transient-stability for 
validating aggregate model of WPPs. The next sections 
present a brief overview of the modeling techniques 
developed for large WPPs. More details are available in [4]. 

A.  Modeling of power electronics in a wind generator 

Modern WGs (type-III and IV) use power electronic 
converters with PWM switching frequencies in the 1- to 5-
kHz range. The simulation of PWM switching is very 
demanding for EMT simulation, since each switching 
implies matrix manipulation that is very costly in 
computation time. Instead of using detailed switch model, 
two different approaches were implemented. These are 
identified as the average model and the switching-function 
model. 

In the average model, the converter is represented by a 3-
phase controlled voltage source. These sources are driven 
by the control voltages of the PWM converters. The 
capacitor voltage variation is also considered in this 
representation, since the AC power flowing in or out the 
converter must be kept equal to the DC power. The average 
converter model implies no switching and no change in 
circuit topology, offering very fast simulation speed. As 
harmonics are not represented, time step as large as 20-50 
µs can be used to conduct various power system studies. 
Fig. 6 depicts the implementation of the average model for 
back-to-back PWM converters of the type-III WG. 

 
Fig. 6. Average modeling of a back-to-back PWM converter 
 

The second approach is the switching-function model. 
The same techniques of controlled voltage source is used, 
except that theses sources inject switched output voltages 
derived from the PWM control signals and PWM 
generators. Smaller time step is required for precise results 
and this representation includes harmonics generated by 
PWM switching.  

B.  Decoupling of WPP power system equations for parallel 
processing on a supercomputer 

Real-time digital simulators, based on multi-processor 
system, have been relying on power system equation 
decoupling for more than a decade. Using this technique, 
part of the natural propagation delay of a transmission line 
is absorbed by the communication time between two 
processors. As a result, the large system impedance matrix 
can be divided into multiple smaller matrices and can be 
solved in parallel on many processors without numerical 
error. The reduced matrix size drastically diminishes the 
computation effort, thus improving simulation speed. 

This technique is only applicable for overhead (O/H) line 
or underground (U/G) cable that are long enough, in order 
to have a total propagation delay that is longer than the 
simulation time step. Unfortunately, WPP collector 
networks use short lines, so the technique cannot be applied 
directly. 

It is known that the propagation delay (tpropag) of a line 
involves its length (l) and its propagation speed (v), as in the 
following equation: 

v
lt propag  and )1(1

LC
  

In order to decouple WPP collector system, the 
propagation delay of some selected U/G cables needs to be 
artificially increased. To do so without affecting the 
precision of the simulation results, this artificial increase is 
done by virtually moving and grouping the C from the 
surrounding power system components. Doing this, the 
global capacitance of the system is not modified, and only 
nearby capacitances are grouped to a punctual location. 

To minimize the impact on simulation results, the virtual 
displacement of capacitances should be done in order to 
preserve the same total positive- and zero-sequence 
capacitance. Using this technique, the collector system can 
be decoupled in numerous sub-networks for very fast 
simulation time. Fig. 7 a) depicts this technique. 

Similarly, each WG present on the WPP can be 
decoupled from the collector system for faster simulation. In 
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this case, decoupling is done at the U/G cable, or at the 
equivalent collector system impedance of an aggregate 
WPP, that interconnects the generator transformer to the 
collector system. If the total capacitance of surrounding U/G 
cables is not sufficient for decoupling, part of the 
transformer leakage inductance can be also moved to the 
decoupling cable. However this virtual displacement of the 
leakage inductance can only be done with a transformer 
with delta connection, to avoid impact on the zero-sequence 
impedance of the system. Fig. 7 b) depicts this technique. 

 
Fig 7. Moving of L and C from surrounding components to allow 
decoupling of WPP collector system equations. 

V.  MODEL VALIDATION 

A.  Validation of type-III wind generator and WWP models 
using on-line disturbance monitoring 

For the purpose of model validation, on-line monitoring 
equipment has been installed on a typical WPP connected to 
the Hydro-Québec power system. This WPP is composed of 
seventy-three 1.5-MW type-III WGs. Fig. 8 shows the 
WPP, with the voltages and currents monitored and their 
locations at the generator, feeder and POI levels. From 2007 
to 2009, various disturbances (e.g. faults and frequency 
deviations) were recorded. Those recordings have been used 
to validate the type-III WG model in the EMT domain. 

 

 
Fig. 8. Measurement points of a wind power plant 
 

The model validation process used is based on playback 
techniques, where the model is fed with recorded voltages 
from the actual WG, and validation is confirmed when the 
model produces the same current as those recorded during 
the disturbance. Following the same approach of waveform 
playback, the entire WPP model has also been validated, 
using recorded voltages and currents at the POI level. The 
WFMS was also modeled and validated in the mean time. 

Fig. 9 shows a comparison between simulation results 
and field measurements for a remote fault. It can be seen 

that the conformity of the model with the field 
measurements is very good for this particular event. Such 
good correspondence of the model for a number of different 
operating conditions and recorded disturbances has greatly 
contributed to increase the confidence in the validity of the 
model. Fine-tuning the model is a process relatively 
straight-forward for small disturbance, but it becomes more 
complex with large and/or unbalanced disturbance due to 
various non-linearities. Regardless of the disturbance 
severity, this approach requires a good understanding of 
internal dynamics and control strategies of the WG to 
model. 

a) Decoupling the WPP collector system 

b) Decoupling a WG from the WPP collector system 

 

IG

Fig 9. Comparison of recorded and simulated waveforms at the type-III 
WG level during a fault on the transmission network 

B.  Validation of aggregation techniques for WPP modeling 

Use of the WPP aggregate models is required for power 
system studies. However, until recently, precision and 
validity of such models remained to be evaluated. 

In order to validate the precision of aggregate models for 
EMT simulation, a detailed model of an actual 109.5-MW 
WPP was developed. Its 73 WGs of 1.5 MW are connected 
to a 34.5-kV collector system comprising 17 km of 
overhead lines and 62 km of cables. The detailed EMT 
model was developed using the modeling techniques 
presented in section IV. 

With the availability of the fast-simulating detailed 
model of this WPP, an exhaustive simulation study [5] was 
performed for validating the adequacy of the National 
Renewable Energy Laboratory (NREL) equivalencing 
method [6]-[7] for modeling WPPs. This method, promoted 
by the Wind Generation Modeling Group (WGMG) of the 
Western Electricity Coordinating Council is illustrated in 
Fig. 10. Aggregated WGs of a WPP are represented by an 
equivalent WPP comprised of only one equivalent WG, one 
equivalent collector system (ECS) and actual station step-up 
and grounding transformers. 

The simulation study demonstrates that the method 
proposed by NREL appears to offer precise results for 
various types of disturbances and operating conditions, for 
both EMT and stability studies. Fig. 11 shows the 
performance of the NREL method for WPP modeling. In 
this figure, a 2-phase fault is applied to 4 different models of 
WPP: the detailed 73-WG model, and three different 
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aggregate WPPs consisting of 1, 2 and 4 equivalent WGs. 
 
 

 
Fig. 10. Single-machine equivalent WPP promoted by the WGMG. 
 

 

 
Fig. 11. Comparison of a detailed WPP model with a 1-, 2- and 4-WG 
equivalent WPP models. More than one equivalent WG is not necessary for 
modeling a WPP when all WGs are exposed to the same wind speed. 

C.  Generic equivalent collector system parameters for 
large WPPs 

The equivalent collector systems of 17 WPPs rated 
between 50 and 300 MW were analyzed. Using this sample, 
a set of generic equivalent collector system parameters were 
calculated to be used for prospective studies of WPPs for 
which little or no information is available yet. An 
exhaustive sensitivity study based on EMT simulations has 
confirmed the adequacy of the generic equivalent collector 
system parameters [8]. 

VI.  LARGE-SCALE REAL-TIME SIMULATION OF WPPS 

The objective of this section is to integrate the modeling 
techniques explained in the previous sections in order to 
simulate in real-time WPPs connected to the Hypersim 
model of the series-compensated Hydro-Québec power 
system. 

A.  Description of the Hypersim model of Hydro-Québec 
power system 

The Hypersim model of the main part of Hydro-Québec 
power system is illustrated in Fig. 12. The eastern part of 
this power system, connected at Lévis substation, is 
illustrated in Fig. 13. In these figures the location of WPPs, 
including WFMS, is shown by wind turbine pictures. For 
the main part of the power system, all 735-kV buses are 
represented, the main 315-kV and 230-kV buses and some 
161- and 120-kV buses are also represented. As for the 
eastern part of the power system, all 315- 230- 161- and 
120-kV and some 69-kV buses are represented. The major 
part of the lower voltage transmission and distribution 
system, including the loads and generation, are represented 
by reduced equivalents. The hydroelectric generators 
models include turbine, automatic voltage regulator (AVR) 
and stabilizer. The line series compensation is also 
represented [9]. The simulated power system includes the 
following main components: 

 643 three phase buses 
 34 hydroelectric generators (turbine, AVR, 

stabilizer) 
 1 steam turbine generator 
 25 WPPs 
 7 static VAR compensators 
 6 synchronous condensers 
 167 three-phase lines 
 More than 150 transformers including magnetic 

saturation 
The total production is 35000 MW including 2700 MW 

of wind power. 1800 MW of wind power are produced by 
16 WPPs in the eastern power system. The 9 WPPs 
connected to the main power system produce the remaining 
900 MW. 

The 25 WPPs are each modeled as single-machine 
equivalents using the validated NREL method with generic 
equivalent collector system parameters presented in section 
V. Although various WG technologies could have been 
used, all WPPs simulated here use the type-III model 
presented in section III. In order to achieve real-time 
simulation performance the modeling techniques presented 
in section IV are used for decoupling WPP equations. The 
average model is used to simulate the power electronic 
converters of WGs. 

B.  Illustrative example of real-time simulation 

The power system of Fig. 12 and 13 is simulated in real-
time using a SGI Altix 4700 supercomputer using 72 
processors, at a 50 s time step. 

In steady-state each WPP is producing its nominal power 
and zero reactive power. The speed of each WPP is 1.2 pu 
(synchronous speed is 1 pu). 

Simulation results shown in Fig. 14 illustrate the system 
response to a 6-cycle single-line-to-ground fault. The fault 
is applied at t = 0.1s at 315-kV Lévis bus and it is 
eliminated at t = 0.2s. 

The first column of Fig. 14 illustrates the three-phase 
voltage at 315-kV Lévis bus and the positive-sequence 
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voltages at 735-kV Boucherville bus close to Montréal and 
230-kV Matane bus in the eastern system. The terminal 
voltage, the speed and the active and reactive powers of the 
synchronous generator at Manic 5 are illustrated in the 
second column of this figure. Finally, the two last columns 
illustrate the active and reactive powers, the DC bus 
voltages and the speeds of WPP7 and WPP9. WPP7 is 
located in the far eastern part of the power system and 
WPP9 is located in the south of Montréal. Speeds and 
voltages of all synchronous generators and WPPs recover 
after fault clearing. This particular power system 
configuration is therefore stable for this particular WPPs 
location. 

VII.  CONCLUSION 

The WPP modeling project conducted at IREQ has 
delivered the following models and methods: 1) a type-III 
WG model, 2) validation of an aggregation method for 
modeling WPPs and 3) validation of the WG and WPP 
models of an actual WPP connected to the Hydro-Québec 
power system. Field measurements have been used for 
model validation. 

The modeling techniques developed in this project for 
simulating WPPs on a supercomputer allow rapid EMT 
simulations of WPPs on large-scale power systems. Real-
time simulation has been achieved to simulate 25 WPPs on 
the Hydro-Québec power system. 

It is now feasible to study possible interactions between 
series-compensated power system, real HVDC controls, and 
massive wind power generation. 
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Fig. 12. Hypersim model of the main part of Hydro-Québec power system 
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Fig. 13. The eastern part of Hydro-Québec power system 

7 of 8

ch0272
Droite 

ch0272
Droite 



S
co

pe
V

ie
w

Va
 L

ev
is

 3
15

kV
V

b 
Le

vi
s 

31
5k

V
V

c 
Le

vi
s 

31
5k

V

0.
05

0.
1

0.
15

0.
2

0.
25

s

−2−1012

V

Va
 L

ev
is

 3
15

kV
V

b 
Le

vi
s 

31
5k

V
V

c 
Le

vi
s 

31
5k

V

0.
05

0.
1

0.
15

0.
2

0.
25

s

−2−1012

P
os

S
eq

 B
ou

ch
er

vi
lle

 7
35

kV

0
1

2
3

4
s

0.
9

0.
951

1.
051.

1

pu

P
os

S
eq

 B
ou

ch
er

vi
lle

 7
35

kV

0
1

2
3

4
s

0.
9

0.
951

1.
051.

1

pu

P
os

S
eq

 M
at

an
e 

23
0k

V

0
1

2
3

4
s

0.
8

0.
91

1.
1

pu

P
os

S
eq

 M
at

an
e 

23
0k

V

0
1

2
3

4
s

0.
8

0.
91

1.
1

pu

V
te

rm
in

al
 M

an
ic

5

0
1

2
3

4
s

0.
981

1.
02

1.
04

1.
06

pu

V
te

rm
in

al
 M

an
ic

5

0
1

2
3

4
s

0.
981

1.
02

1.
04

1.
06

pu

S
pe

ed
 M

an
ic

5

0
1

2
3

4
s

0.
99

9

0.
99

951

1.
00

05

1.
00

1

pu

S
pe

ed
 M

an
ic

5

0
1

2
3

4
s

0.
99

9

0.
99

951

1.
00

05

1.
00

1

pu

P
 M

an
ic

5
Q

 M
an

ic
5

0
2

4
s

0

50
0

10
00

15
00

20
00

MVA

P
 M

an
ic

5
Q

 M
an

ic
5

0
2

4
s

0

50
0

10
00

15
00

20
00

MVA

P
 W

P
P

7
Q

 W
P

P
7

0
1

2
3

4
s

−0
.50

0.
51

1.
5

pu / 100MVA

P
 W

P
P

7
Q

 W
P

P
7

0
1

2
3

4
s

−0
.50

0.
51

1.
5

pu / 100MVA

V
dc

 W
P

P
7

0
1

2
3

4
s

10
60

10
80

11
00

11
20

11
40

V

V
dc

 W
P

P
7

0
1

2
3

4
s

10
60

10
80

11
00

11
20

11
40

V

S
pe

ed
 W

P
P

7

0
1

2
3

4
s

1.
19

1.
19

5

1.
2

1.
20

5

1.
21

pu

S
pe

ed
 W

P
P

7

0
1

2
3

4
s

1.
19

1.
19

5

1.
2

1.
20

5

1.
21

pu

P
 W

P
P

9
Q

 W
P

P
9

0
1

2
3

4
s

−0
.50

0.
51

1.
5

pu / 100MVA

P
 W

P
P

9
Q

 W
P

P
9

0
1

2
3

4
s

−0
.50

0.
51

1.
5

pu / 100MVA

V
dc

 W
P

P
9

0
1

2
3

4
s

10
00

10
50

11
00

11
50

12
00

V

V
dc

 W
P

P
9

0
1

2
3

4
s

10
00

10
50

11
00

11
50

12
00

V

S
pe

ed
 W

P
P

9

0
1

2
3

4
s

1.
19

1.
19

5

1.
2

1.
20

5

1.
21

pu

S
pe

ed
 W

P
P

9

0
1

2
3

4
s

1.
19

1.
19

5

1.
2

1.
20

5

1.
21

pu

1
/1

F
ig

. 1
4.

 S
ys

te
m

 r
es

po
ns

e 
to

 a
 6

-c
yc

le
 s

in
gl

e-
li

ne
-t

o-
gr

ou
nd

 f
au

lt
 

 

pu

8 of 8


	I.   Nomenclature
	II.   Introduction
	III.   Wind Generator Model
	A.   Crotor control system
	B.   Cgrid control system

	IV.   Modeling Techniques for SimulatingLarge WWPs
	A.   Modeling of power electronics in a wind generator
	B.   Decoupling of WPP power system equations for parallel processing on a supercomputer

	V.   Model Validation
	A.   Validation of type-III wind generator and WWP models using on-line disturbance monitoring
	B.   Validation of aggregation techniques for WPP modeling
	C.   Generic equivalent collector system parameters for large WPPs

	VI.   Large-Scale Real-Time Simulation of WPPs
	A.   Description of the Hypersim model of Hydro-Québec power system
	B.   Illustrative example of real-time simulation

	VII.   Conclusion
	VIII.   References
	IX.   Biographies
	tmp.pdf
	I.   Nomenclature
	II.   Introduction

	tmp.pdf
	I.   Nomenclature
	II.   Introduction




