
Correcting Nonuniform Illumination

Image Processing Toolbox™ offers a variety of techniques to enhance an image prior to segmentation.
Enhancement techniques can improve segmentation results by accounting for problems in the image cap-
ture process, such as non-uniform illumination, noise, or blurring.

This example shows how to correct nonuniform illumination in an image to make it easy to identify indi-
vidual grains of rice in the image. You can then learn about the characteristics of the grains and easily
compute statistics for all the grains in the image.

Step 1: Reading the Image

Suppose you have an image rice.png, which shows grains of rice on a varied gray background. You can get
started by reading the image into MATLAB®.

I = imread('rice.png');

imshow(I)

Step 2: Using Morphological Opening to Estimate the Background

Notice that the background illumination is brighter in the center of the image than at the bottom. You can
use imopen to estimate the background illumination.

background = imopen(I,strel('disk',15));

% Display the Background Approximation as a Surface

figure

surf(double(background(1:8:end,1:8:end))),zlim([0 255]);

ax = gca;

ax.YDir = 'reverse';

Step 3: Subtracting the Background Image from the Original Image

You can then subtract the background from the image.

I2 = I - background;

imshow(I2)

You can perform steps 2 and 3 together using the imtophat function, which first calculates the morpho-
logical opening and then subtracts it from the original image.

I2 = imtophat(I,strel('disk',15));

Step 4: Increasing the Image Contrast

You can use imadjust to increase the contrast of the image.

I3 = imadjust(I2);

imshow(I3);

Step 5: Thresholding the Image

You can then create a new binary image by thresholding the adjusted image with imbinarize and
removing background noise with bwareaopen.

bw = imbinarize(I3);

bw = bwareaopen(bw, 50);

imshow(bw)

Step 6: Identifying Objects in the Image

The function bwconncomp finds all the connected components (objects) in the binary image. The accu-
racy of your results depends on the size of the objects, the connectivity parameter (4, 8, or arbitrary), and
whether or not any objects are touching (in which case they may be labeled as one object). Some of the rice
grains in bw are touching.

cc = bwconncomp(bw, 4)

cc =

 Connectivity: 4

 ImageSize: [256 256]

 NumObjects: 95

 PixelIdxList: {1x95 cell}

Step 7: Examining One Object

Each distinct object is labeled with the same integer value. You can see a single grain by showing the 50th
connected component, for example.

grain = false(size(bw));

grain(cc.PixelIdxList{50}) = true;

imshow(grain);

Step 8: Viewing All Objects

One way to visualize connected components is to create a label matrix and then display it as a pseudo-color
indexed image.

You can use labelmatrix to create a label matrix from the output of bwconncomp. Note that
labelmatrix stores the label matrix in the smallest numeric class necessary for the number of objects.

labeled = labelmatrix(cc);

whos labeled

 Name Size Bytes Class Attributes

 labeled 256x256 65536 uint8

In the pseudo-color image, the label identifying each object in the label matrix maps to a different color in
the associated colormap matrix. You can use label2rgb to choose the colormap, the background color,
and how objects in the label matrix map to colors in the colormap.

RGB _ label = label2rgb(labeled, @spring, 'c', 'shuffle');

imshow(RGB _ label)

Step 9: Computing the Area of Each Object

Each rice grain is one connected component in the cc structure. You can use regionprops on cc to
compute the area.

graindata = regionprops(cc,’basic’)

graindata =

95x1 struct array with fields:

 Area

 Centroid

 BoundingBox

To find the area of the 50th component, you can use dot notation to access the Area field in the 50th ele-
ment of the graindata structure array.

graindata(50).Area

ans =

 194

Step 10: Computing Area-Based Statistics

To hold the area measurement for each grain, you can create a new vector, grain _ areas.

grain _ areas = [graindata.Area];

You can then find the grain with the smallest area.

[min _ area, idx] = min(grain _ areas)

grain = false(size(bw));

grain(cc.PixelIdxList{idx}) = true;

imshow(grain);

min _ area =

 61

idx =

 16

Step 11: Creating a Histogram of the Area

To visualize the area distribution for all of the rice grains, you can create a histogram.

nbins = 20;

figure, histogram(grain _ areas,nbins)

title('Histogram of Rice Grain Area');

© 2016 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

mathworks.com

93002v00 05/16

Learn More About Image Processing

• The Watershed Transform: Strategies for Image Segmentation (technical article)

• New Features for High-Performance Image Processing in MATLAB (technical article)

• ThresholdLocally (download)

• Image Processing Toolbox (product trial)

http://www.mathworks.com/trademarks
http://www.mathworks.com
http://www.mathworks.com/company/newsletters/articles/the-watershed-transform-strategies-for-image-segmentation.html?s_tid=res_ip_kit1
http://www.mathworks.com/company/newsletters/articles/new-features-for-high-performance-image-processing-in-matlab.html?s_tid=res_ip_kit1
http://www.mathworks.com/matlabcentral/fileexchange/29764-thresholdlocally?s_tid=res_ip_kit1
https://www.mathworks.com/programs/trials/trial_request.html?prodcode=IP&s?s_iid=pdf_trial_ip_kit1

