
1

2© 2017 The MathWorks, Inc.

Verification Techniques in Model-Based Design for

High Integrity System

Young Joon Lee

Principal Application Engineer

3

Key Takeaways

1. Find bugs early, develop high

quality software

2. Replace manual verification tasks

with workflow automation

3. Learn about reference workflow that

conforms to safety standards

High Level

Design

Detailed

Design

Coding

Integration

Testing

Unit

Testing

Verified & Validated

System
System

Requirements

“Reduce costs and project risk through early

verification, shorten time to market on a certified

system, and deliver high-quality production code that

was first-time right” Michael Schwarz, ITK Engineering

4

Safety of Electronic Systems

 Critical functionality in industries such as Automotive,

Aerospace, Medical, Industrial Automation

 Real-time operation

– Compute time lag cannot be tolerated

 Predictable behavior

– No unintended functionality

 Must be robust

– Program crash or reboot not allowed

!

5

Role of Certification Standards

 ISO 26262 (Automotive)

– Defines functional safety for automotive electronic systems

– Automotive Safety Integrity Level ASIL QM, A to D (least to most; derived from severity, controllability,
probability)

– ISO 26262-6 pertains to software development, verification, and validation

 DO-178 (Avionics)

– Guidelines for the safety of software in certain airborne systems

– Level A to E (most critical to least)

– Verification activities include review of requirements and code, testing of software, code coverage

 IEC 62304 (Medical Device)

– Describes software development and maintenance processes for medical device software

– Safety levels Class A to C (least critical to most)

– Identifies various verification and testing activities

6

Traditional Development Process

 Start with a paper design

 Manually determine system architecture

 Identify algorithms for the application

 Start writing code for the algorithms

 Develop testing platform to unit test algorithms

 Manually unit test the code with the testing platform

 Test the design with the real hardware and code

 Find bugs, fix bugs, repeat … very painful !!!

7

Problems with Traditional Development Process

Paper Design Handwritten Code ECU

Time

Testing
Cost Develop some tests

Integration test on

hardware or in the field

Unit test on PC/Desktop

• Errors introduced during development

• They are detected late in the process

• Latent errors remain in the software

8

Addressing Design and Development Challenges

It is easier and less expensive to fix design errors

early in the process when they happen.

Model-Based Design enables:

1. Early testing to increase confidence in your design

2. Delivery of higher quality software for production use

3. Credits and artifacts for certification to satisfy safety standards

9

INTEGRATION

IMPLEMENTATION

CADVHDL, VerilogC, C++

MCU DSP FPGA ASIC
Analog

Hardware

Model Based Design

 Modeling

– Model algorithms and environment

– Explore design alternatives and options

 Simulation

– Design exploration with simulation

– Find issues early, on your desktop PC

 Production code

– Code generated automatically from model

– Early verification for high quality code

DESIGN

RESEARCH REQUIREMENTS

Environment Models

Mechanical

Control Algorithms

Electrical

Supervisory Logic

T
E

S
T

 A
N

D
 V

E
R

IF
IC

A
T

IO
N

TEST

SYSTEM

10

Reference Verification and Validation Workflow

11

Reference Verification and Validation Workflow

 Certifiable Model-Based Design Workflow to develop critical embedded software

 Reviewed and approved by TÜ V SÜ D certification authority

Textual

Requirements

Executable

Specification

Modelling

Object

code

Compilation

and Linking

Generated

C/C++ code

Code

Generation

Model used for

production code

generation

Review and

static analysis

Equivalence

testing

Equivalence

checking

Component and system

testing

12

Reference Verification and Validation Workflow

Textual

Requirements

Executable

Specification

Model used for

production code

generation

Generated

C/C++ code

Object

code

Modelling
Compilation

and Linking

Code

Generation

Requirements for system

or software component

13

Reference Verification and Validation Workflow

Textual

Requirements

Executable

Specification

Modelling

• Predict dynamic system behavior by simulation

- System & environment models

- Precision with floating point

• Use of simulation results for system design

- Fast What-/If studies

- Short iteration cycles

Model used for

production code

generation

Generated

C/C++ code

Object

code

Compilation

and Linking

Code

Generation

14

Reference Verification and Validation Workflow

Textual

Requirements

Executable

Specification

Model used for

production code

generation

Modelling

• Model tuned for target processor

- Fixed point mathematics, real-time behavior

• Configure for production use

- Support for standards (AUTOSAR, ASAP2)

Generated

C/C++ code

Object

code

Compilation

and Linking

Code

Generation

15

Reference Verification and Validation Workflow

Model used for

production code

generation

Generated

C/C++ code

Code

Generation

• Automatically generated code for target processor

- Optimized, efficient C/C++ code

• Fine grain control of generated code

- Files, functions, data

Object

code

Compilation

and Linking

Textual

Requirements

Executable

Specification

Modelling

16

Reference Verification and Validation Workflow

Generated

C/C++ code

Object

code

Compilation

and Linking

Object code linked with system

software and flashed to ECU

Model used for

production code

generation

Code

Generation

Textual

Requirements

Executable

Specification

Modelling

17

Verification and Validation

Tasks and Activities

18

Generated

C/C++ code

Object

code

Compilation

and Linking

Code

Generation

Requirements Traceability

Text ↔ Models

 Find missing or incomplete requirements

 Are requirements sufficiently specified

 Identify inconsistent requirements

 Product: Simulink Verification & Validation

Textual

Requirements

Executable

Specification

Model used for

production code

generation

Modelling

Verification and Validation Tasks and Activities

19

Bi-directionally Trace Requirements
Textual

Requirements

Executable

Specification

Model used for

production code

generation

Generated

C/C++ code

Object

code

Modelling
Compilation

and Linking

Code

Generation

Textual Requirements Design Model

20

Verification and Validation Tasks and Activities

Functional Testing

Textual

Requirements

Executable

Specification

Model used for

production code

generation

Generated

C/C++ code

Object

code

Modelling
Compilation

and Linking

Code

Generation

 Does design meet requirements

 Confirm correct design behavior

 Verify no unintended behavior

 Product: Simulink Test,

Simulink Design Verifier

21

Functional Testing

 Functional testing process

– Author test-cases (derived from requirements)

– Use formal verification to auto generate tests (more on this next)

– Execute tests across design environments (with test iterations)

– Monitor test verdicts (pass/fail)

 Product: Simulink Test

– Test harness to isolate component under test

– Author complex test scenarios with Test Sequence

– Manage tests, execution, and results

Textual

Requirements

Executable

Specification

Model used for

production code

generation

Generated

C/C++ code

Object

code

Modelling
Compilation

and Linking

Code

Generation

22

Verification and Validation Tasks and Activities

Formal Functional

Verification

Textual

Requirements

Executable

Specification

Model used for

production code

generation

Modelling

 Prove design meets requirements

– Formally verify requirements and safety

– Test case generation for functional testing

 Prove that the design is robust

– Check that the design does not contain errors

such as overflow, divide by zero, dead logic, …

 Product: Simulink Design Verifier

Generated

C/C++ code

Object

code

Compilation

and Linking

Code

Generation

23

Motivation for Formal Verification (Formal Methods)

 “Program testing can be used to show the presence of bugs, but never to

show their absence” (Dijkstra)

 “Given that we cannot really show there are no more errors in the program,

when do we stop testing?” (Hailpern)

Dijkstra, “Notes On Structured Programming”, 1972

Hailpern, Santhanam, “Software Debugging, Testing, and Verification”, IBM Systems Journal, 2002

24

Formal Methods Technique – Model Checking

Model

Specification Test

Model Checker

Proven True

Proven False

DONE

 Given

– Design model

– Requirement specification

 Prove that

– Design meets the requirement specification, or

– Does not meet the requirement and automatically

generate test-case proving requirement not met

25

Prove That Design Meets Requirements

With Model Checking

Checks that design meets requirements

• Gear 2 always engages when speed > 50

• Gear 2 never engages when speed < 5

Expected behavior of design

Behavior that design should not exhibit

Textual

Requirements

Executable

Specification

Model used for

production code

generation

Generated

C/C++ code

Object

code

Modelling
Compilation

and Linking

Code

Generation

26

Test Case Generation for Functional Testing

 Specify functional test objectives

– Define custom objectives that signals must satisfy in test cases

 Specify functional test conditions

– Define constraints on signal values to constrain test generator

Test Condition

Test Objective Test Objective

With Model Checking

Textual

Requirements

Executable

Specification

Model used for

production code

generation

Generated

C/C++ code

Object

code

Modelling
Compilation

and Linking

Code

Generation

27

Formal Methods Technique – Abstract Interpretation

 Consider multiplication of three integers

–4586 × 34985 × 2389 = ?

 Quickly compute the final value by hand

– What is the final answer?

– What about the sign?

 The sign result

– Could be positive, negative (or zero)

– Per math rules, we know it is negative

 We abstracted complex details

– Provably know precisely the sign

Procedure
Problem
Instance

Proven YES

Proven NO

Unproven

28

Prove That Design is Robust

With Abstract Interpretation

Design can suffer from overflows, divide by

zero, and other robustness errors

• Proven that overflow does NOT occur

• Proven that overflow DOES occur

Textual

Requirements

Executable

Specification

Model used for

production code

generation

Generated

C/C++ code

Object

code

Modelling
Compilation

and Linking

Code

Generation

29

Verification Task

Model used for

production code

generation

Generated

C/C++ code

Object

code

Compilation

and Linking

Code

Generation

Coverage Analysis

 Coverage metric

– Measure of how much software has been tested

 Identify testing gaps to find

– Untested design elements

– Dead logic and unreachable states

 Identify requirement issues

– Missing or inconsistent functional requirements

– Discover requirement problems early

 Product: Simulink Verification & Validation

Textual

Requirements

Executable

Specification

Modelling

30

Coverage Concepts

 Types of coverage

– Statement: each statement in the code executed

– Decision: has every branch of control statements executed

– Condition: Boolean sub-expression evaluated for both true and false

– Modified Condition Decision Coverage (MCDC)

 MCDC explained

– All entry/exit points invoked

– Condition in decisions and conditions taken all possible outcomes

– Each condition in a decision independently affects decision outcome

Textual

Requirements

Executable

Specification

Model used for

production code

generation

Generated

C/C++ code

Object

code

Modelling
Compilation

and Linking

Code

Generation

if (X && Y)

Z = 1;

else

Z = -1;

end

Condition

Decision

MCDC

Statement

31

Verification and Validation Tasks and Activities

Model used for

production code

generation

Generated

C/C++ code

Object

code

Compilation

and Linking

Code

Generation

Test Generation

for Coverage

 Automate manual task of writing test-cases and test inputs

– Intelligent determination of input combinations for high coverage

 Formal methods based test generation

– Analyze design, states, logic paths in the design model

 Product: Simulink Design Verifier

Textual

Requirements

Executable

Specification

Modelling

32

Addressing Missing Coverage
Textual

Requirements

Executable

Specification

Model used for

production code

generation

Generated

C/C++ code

Object

code

Modelling
Compilation

and Linking

Code

Generation

Design
Model

Functional
Tests

Coverage Analysis
Coverage

Report
Partial Coverage

(less than 100%)

Test Generator
(formal methods)

Additional
Tests

Coverage Analysis
Coverage

Report
Full Coverage

(100%)

Step 1

Step 2

Step 3

33

Other code

Verification and Validation Tasks and Activities

Model used for

production code

generation

Generated

C/C++ code

Object

code

Compilation

and Linking

Code

Generation

Static Code Analysis

 Checks conformance to coding standards

– MISRA (Motor Industry Software Reliability Association)

 Finds bugs and proves absence of run-time errors

– In the integrated code

 Products: Polyspace Bug Finder, Code Prover

Textual

Requirements

Executable

Specification

Modelling

34

Motivation for Static Code Analysis

 The Generated Code is integrated with other Handwritten Code

 Impossible to exhaustively test the integrated code for bugs

 Certification standards require checking code for coding standards

 Critical run-time errors can cause un-intended behavior

35

Static Code Analysis Techniques

 Compiler warnings

– Incompatible type detection, etc.

 Code metrics and standards

– Comment density, cyclomatic complexity,
MISRA C/C++

 Bug finding

– Pattern matching, heuristics, data/control flow

 Code proving

– Formal methods with abstract interpretation

– No false negatives

Results from Polyspace Code Prover

36

Verification and Validation Tasks and Activities

Equivalence Testing

Model used for

production code

generation

Generated

C/C++ code

Object

code

Modelling
Compilation

and Linking

Code

Generation

SIL – Software in the Loop

(prevention of unintended

functionality)

PIL – Processor in the Loop

(back to back testing)

* Reference: ISO 26262 www.iso.org

Code

Generation

Executable

Specification

Modelling

Textual

Requirements

http://www.iso.org/

37

Software In the Loop (SIL) Testing

Test
Vectors

Desktop Simulation
(on PC)

Results

Model

Object Code
Execution (on PC)

Results

Generated
Code

Object File

Code
Generator

PC
Compiler

== ?

Compare

 Show equivalence, model to code

 Assess code execution time

 Collect code coverage

38

Processor In the Loop (PIL) Testing

Test
Vectors

Desktop Simulation
(on PC)

Results

Model

Object Code
Execution (on target)

Results

Generated
Code

Object File

Code
Generator

Cross
Compiler

== ?

Compare

 Verify numerical equivalence

 Assess target execution time

 Collect on target code coverage

39

MathWorks Solution Summary

Simulink Verification and Validation
Requirements

Traceability

Simulink Test, Simulink Design Verifier
Testing

Simulink Design Verifier, Polyspace Code Prover
Formal Verification

Simulink Verification and Validation
Coverage Analysis

Polyspace Bug Finder, Polyspace Code Prover
Static Code

Analysis

Simulink Test
SIL, PIL

40

Key Takeaways

1. Find bugs early, develop high

quality software

2. Replace manual verification tasks

with workflow automation

3. Learn about reference workflow that

conforms to safety standards

High Level

Design

Detailed

Design

Coding

Integration

Testing

Unit

Testing

Verified & Validated

System
System

Requirements

UAV Flight Control Software Development and

Verification … “development effort reduced by 60%”

Jungho Moon, KAL

41

Additional Customer References and Applications

