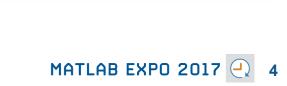

MATLAB EXPO 2017 What's New in MATLAB and Simulink R2017 R2016

Dr. Marc Segelken

Platform Productivity



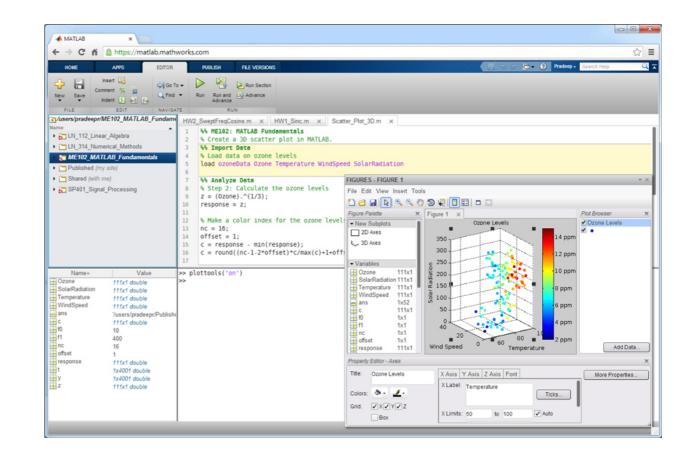
Getting your work done faster

Change the Way You Work in MATLAB

See results together with your MATLAB code in the Live Editor (introduced in R2016a)

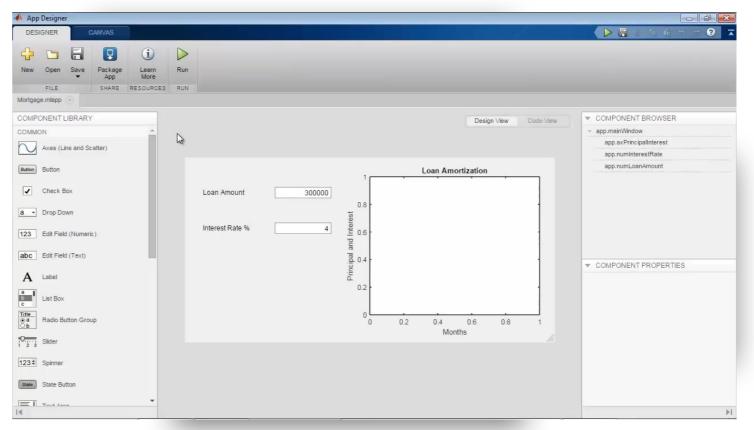
- Add equations, images, hyperlinks, and formatted text
- Present, share, and collaborate using interactive documents
- Interactive figure updates
 - Pan , zoom, and rotate axes
 - Interactive plot customization, with MATLAB code generation to automate work
- Interactive equation editor

Live Editor - C:\Demos\16a_Demos\live_editor_scripts\Sunrise_Sunset.mlx - 2 2 5 **2** LIVE EDITOR Find Files <u>BIU</u>M **Equation** 2 AaBbCc **Hyperlink** % 💥 Sectio Run Normal Headin **F P F** Break 📄 Image All Section -FORMAT FILE NAVIGATE RUN Sunrise_Sunset.mlx 🛛 🗶 🕂 For this example, we will use Boston as our location. We can see how the solar time correction changes over the course of a year. longCorr = 15.7600solarCorr = 1x365 double long = -71.06;12.0548 11.6103 11.1706 10.7361 ··· lat = 42.36; Solar Time Correction UTCoff = -5;longCorr = 4*(long - 15*UTCoff)30 days = 1:365;25 B = 360*(days - 81)/365; Minutes 15 EoTCorr = 9.87*sind(2*B) - 7.53*cosd(B) - 1.5*sind(B); solarCorr = longCorr + EoTCorr clf plot(days,solarCorr) axis([1 365 0 35]) title('Solar Time Correction') 100 150 200 250 300 350 xlabel('Day of Year') 50 Day of Year ylabel('Minutes')


R2016b R2017a

MATLAB Online

- Provides access to MATLAB desktop and full MATLAB language support from any standard web browser
- No downloads or installs.
- Cloud Storage and synchronization via MATLAB Drive
- Log in here with your MathWorks Account: <u>https://matlab.mathworks.com/</u>



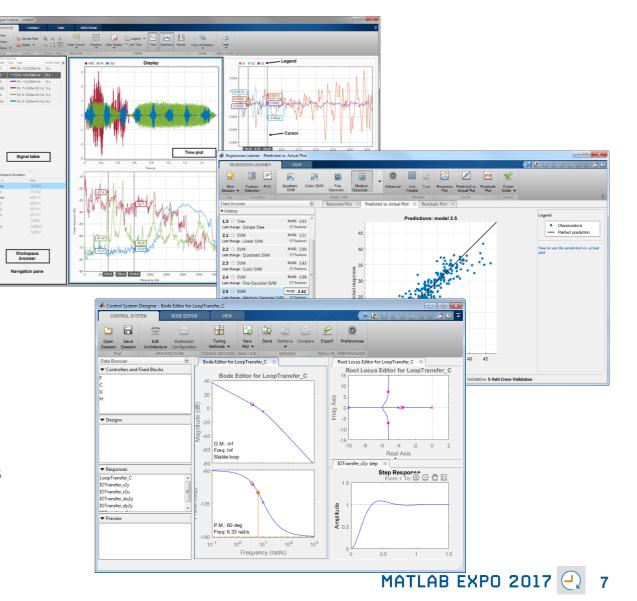
R2016b R2017a

App Designer

Environment for building MATLAB apps (introduced in R2016a)

- Full set of standard user interface components, as well as gauges, knobs, switches, and lamps
- Rich design environment for laying out apps
- Object-based code format for easily sharing data between parts of the app
- Enhancements include:
 - Majority of 2-D plots supported
 - Embed tabular displays using uitable
 - Zoom and pan plots in apps

MATLAB EXPO 2017 🕘 6



Apps Simplify Modeling and Simulation R2016a R2016b R2017a

These interactive applications automate common technical computing tasks

- Signal Analyzer app
 - Perform time- and frequency-domain analysis of multiple time series
- Regression Learner app
 - Train regression models using supervised machine learning
- Control System Designer app
 - Design single-input, single-output (SISO) controllers

Signal Processing Toolbox Statistics and Machine Learning Toolbox Control System Toolbox

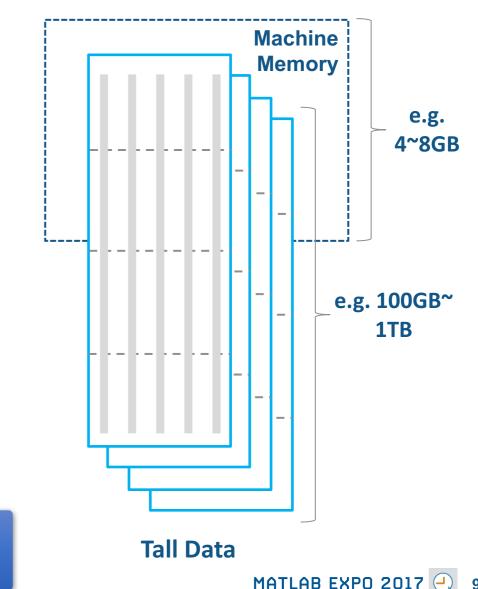
Working with Data Just Got Easier

New data types and functionality for more efficient storage and managing of data

- timetable data container (introduced in R2016b)
 - Store time-stamped tabular data
 - Reorganize, evenly space, and align data
- string arrays (introduced in R2016b)
 - Memory efficient, faster string operations
 - New functions for common string manipulation
- New capabilities for preprocessing data
 - Find, fill, and remove missing data
 - Detect and replace outliers
 - Smooth noisy data

Time		Day	Total	Westbound	Eastbo	
06/24/2015 00	0:00:00	Wednesday	13	9	4	
06/24/2015 01	1:00:00	Wednesday	3	3	0	
06/24/2015 02	2:00:00	Wednesday	1	1	0	
06/24/2015 03	3:00:00	Wednesday	1	1	0	
06/24/2015 04	4:00:00	Wednesday	1	1	0	
06/24/2015 05	5:00:00	Wednesday	7	3	4	
Command Window						
>> s = [string s = 2×1 <u>string</u> a		Circle Triang	le'); stri	ing('Red Blue	Green')]	
s =	rray rcle Tria		le'); stri	ing('Red Blue	Green')]	
s = 2×1 <u>string</u> a "Square Ci	rray rcle Tria		le'); stri	ing('Red Blue	Green')]	
s = 2×1 <u>string</u> a "Square Ci "Red Blue	rray rcle Tria		le'); str:	ing('Red Blue	Green')]	
s = 2×1 <u>string</u> a "Square Ci "Red Blue >>	rray rcle Tria Green"	ingle"	le'); str:	ing('Red Blue	Green')]	
s = 2×1 <u>string</u> a "Square Ci "Red Blue >> >>	rray rcle Tria Green"	ingle"	le'); str:	ing('Red Blue	Green')]	
<pre>s = 2×1 string a "Square Ci "Red Blue >> >> >> >> >> replace(s,</pre>	rray rcle Tria Green" 'Square',	ingle"	le'); str:	ing('Red Blue	Green')]	
<pre>s = 2×1 string a "Square Ci "Red Blue >> >> >> >> >> replace(s, ans =</pre>	rray rcle Tria Green" 'Square', rray	ngle" 'Rectangle')	le'); str:	ing('Red Blue	Green')]	
<pre>s = 2×1 string a "Square Ci "Red Blue >> >> >> >> >> replace(s, ans = 2×1 string a</pre>	rray rcle Tria Green" 'Square', rray circle T	ngle" 'Rectangle')	le'); str:	ing('Red Blue	Green')]	

MathWorks[®]


MATLAB EXPO 2017

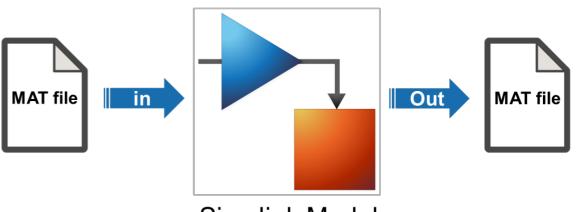
Learn more at this session: **Big Data and Machine** Learning

Working with **Big** Data Just Got Easier

Use tall arrays to manipulate and analyze data that is too big to fit in memory

- Tall arrays let you use familiar MATLAB functions and syntax to work with big datasets, even if they don't fit in memory
- Support for hundreds of functions in MATLAB and Statistics and Machine Learning Toolbox
- Works with Spark + Hadoop Clusters

R2016b R2017a



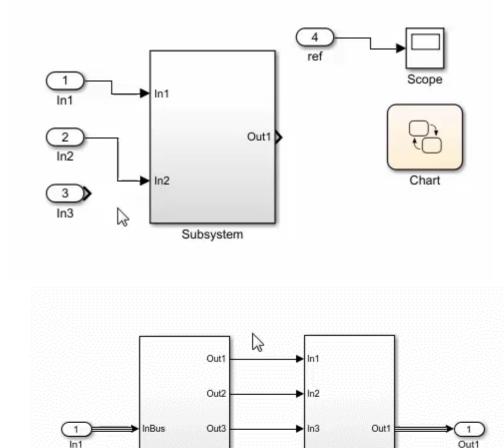
Working with Big Data Just Got Easier in Simulink Too

Stream large input signals from MATfiles without loading the data into memory

- Provides a big data workflow for Simulink simulations
- Use big data in Simulink logging and loading
- Especially useful when running many simulations where data retrieved is too large to fit into memory

Learn more at this session: Simulink as Your Enterprise Simulation Platform

Simulink Model


MathWorks

Create Your Models Faster

Use automatic port creation and reduced bus wiring

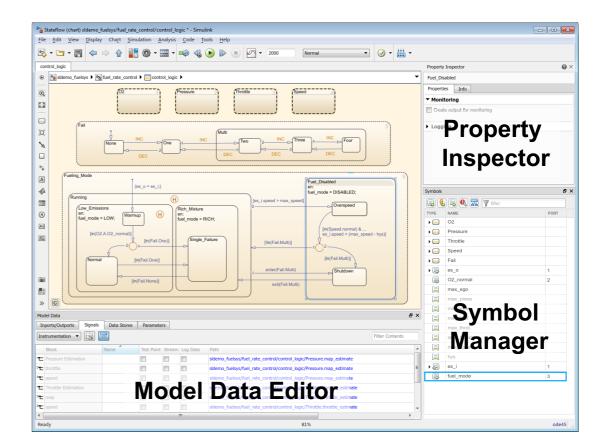
- Add inports and outports to blocks when routing signals
- Quickly group signals as buses and automatically create bus element ports for fewer signal lines

Out4

Out5

Subsystem

Subsystem2


A MathWorks[®]

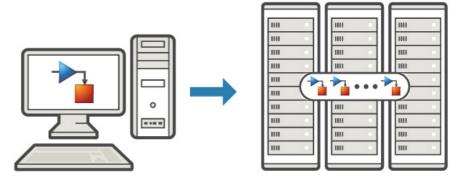
R2016b

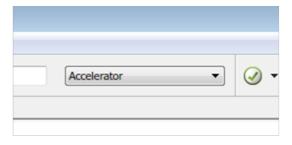
Define your Data Faster

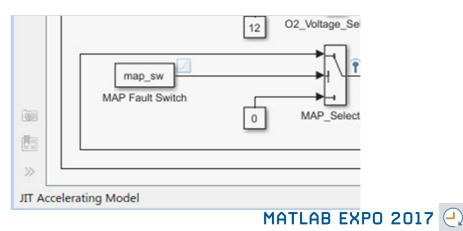
Reduces the need to open separate dialog boxes

- Model and block parameter data is now accessible within the main editor window
- Accessing and defining Stateflow data is also much easier

Stateflow

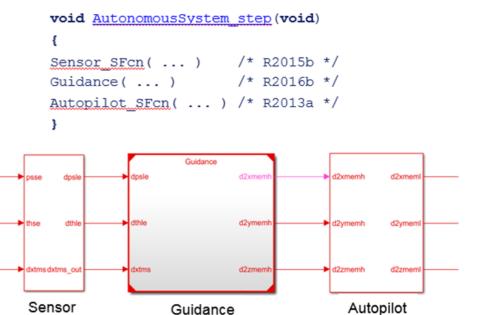

R2017a


Simulate your Model Faster


Use the new parsim command and JIT acceleration to speed up your simulations

- Directly run multiple parallel simulations from the parsim command
- Especially use for Monte Carlo simulations and Design of Experiments
- Quickly build the top-level model for improved performance when running simulations in Accelerator mode

Parallel Computing Toolbox MATLAB Distributed Computing Server Learn more at this session: Parallel Computing with MATLAB and Simulink



Embedded Coder

Cross-Release Code Integration

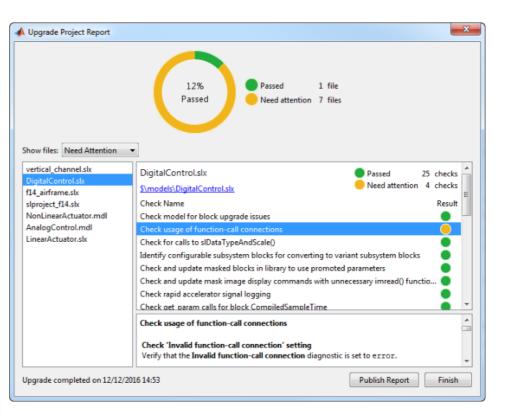
Reuse code generated from previous releases

- Reuse code that you generated from previous releases (R2010a and later)
- Avoid reverification cost due to the reuse of unmodified code

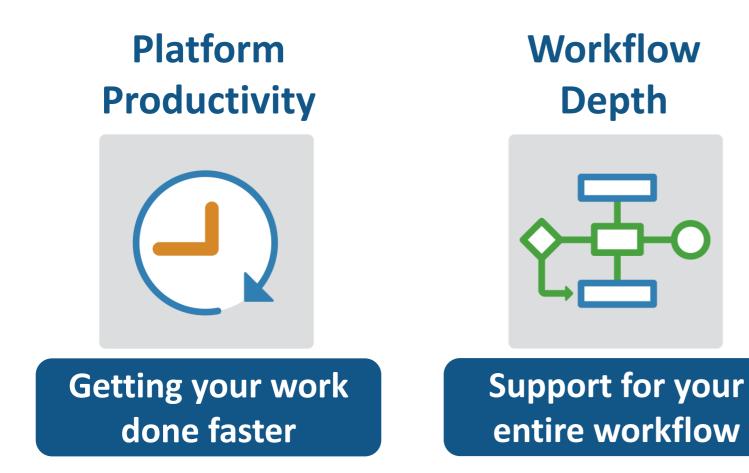
MathWorks[®]

R2016b

R'(1) / c


Simulink Project Upgrade

Easily update all the models in your Simulink Project to the latest release


- Avoid the manual process of upgrading one model at a time
- Simulink Project upgrade is an easy to use UI to automate the upgrade process of all the models in a Simulink project
- Fixes are automatically applied and a report gets generated

Learn more at this session: Simulink as Your Enterprise Simulation Platform

Upgrade your	project models to the current release.				
Upgrade:	All project models (8 files)				
Check for:	Everything (29 checks)				
Update diagra	m: Required				
Apply upo	rades automatically				
Change Optic	ns				
	Upgrade Cancel				

Integrate MATLAB Analytics into Enterprise Applications

R2016a

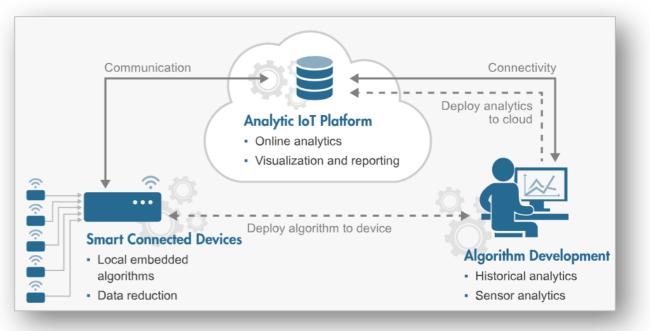
Deploy MATLAB algorithms without recoding or creating custom infrastructure

- Develop clients for MATLAB Production Server in any programming language that supports HTTP using RESTful API and JSON
- Configure and manage multiple R2017cl server instances using a web-based interface

MathWorks	MATLAB		Log o	
Search Menu Servers V localhost	mps4 The instance has not been restarted since the last configuration changes. Overview Applications Requests Logs Settings	Running		
mps1 mps2 mps3	Up Time: 0:00:32:12	CPU Percentage Worker Processes 1% 1/1	Requests in Queue 50	
mps4	Server Instance Detail			
Applications mpsbench mymagic W Help	Description: HTTP: 9910 HTTPS: Created on: 2016-10-21 10.19:21 Last Modified: 2016-10-24 16:35:01	Memory Throughput 231,948 K 0.33/s	Total Queue Time 19499 S	
	Activities Requests Available Workers		Ma	nth Day Hour Minute

Learn more at this session: Integrate MATLAB analytics into enterprise applications

R2016b

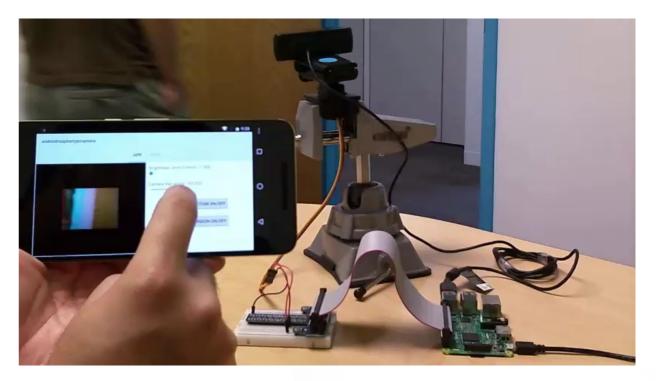

MATLAB EXPO 2017

Connecting MATLAB Analytics to IoT Systems

Develop analytics and deploy IoT systems

- Quickly collect and analyze IoT data with ThingSpeak and MATLAB
- Develop analytics algorithms using MATLAB and toolboxes
- Deploy on smart devices using code generation and embedded target support
- Deploy at scale on cloud using ThingSpeak and MATLAB Production Server

Learn more at this session: Developing Analytics and Deploying IoT Systems

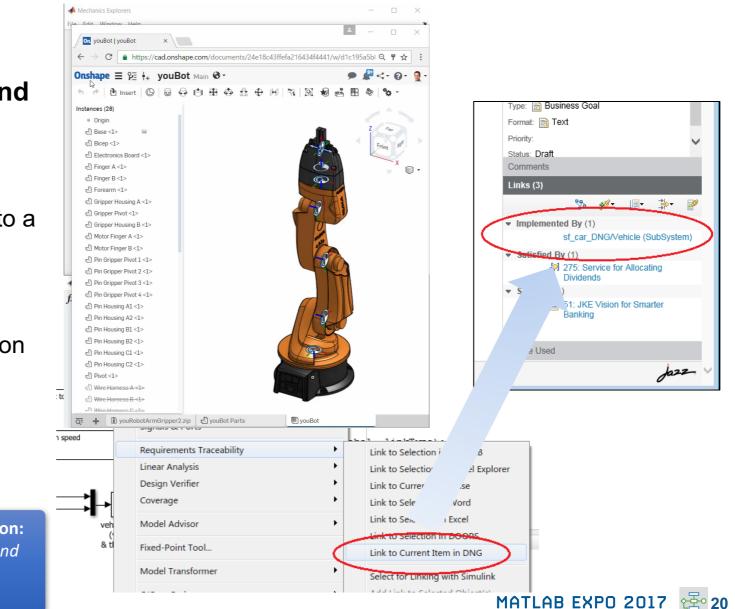


R2016b

New Hardware Support

Run Simulink models on low-cost hardware devices

- Run Simulink models on Raspberry Pi 3 and Google Nexus devices
- Adds to existing hardware support, including LEGO, Arduino, iPhone, and Android devices

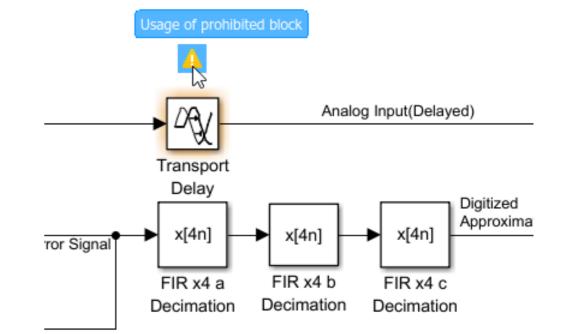

📣 MathWorks•

R2017a

More Connections to 3rd Party Tools

Connect your models to Onshape and DOORS Next Generation

- Convert an Onshape CAD assembly into a Simscape Multibody model
- Link and trace model elements to requirements in DOORS Next Generation


Simscape Multibody Simulink Verification and Validation Learn more at this session: Modeling Mechanical and Hydraulic Systems in Simscape

Complying with Safety-Critical Standards

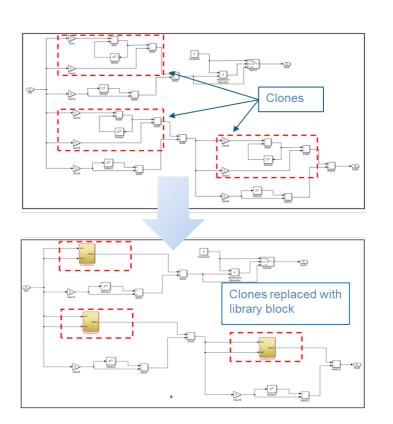
Detect and fix standards compliance issues at design time with edit-time checking

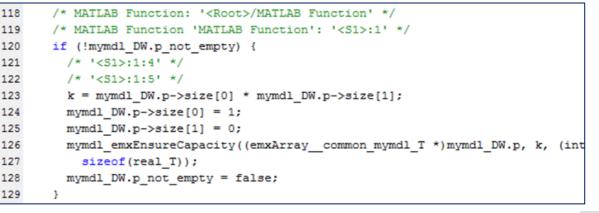
- Quickly address compliance and modeling standards issues before running the model
- For example, check for prohibited blocks or block names
- Especially useful for applications that require compliance to standards such as DO-178, ISO 26262, IEC 62304

Learn more at this session: Verification, Validation and Test in Model Based Design

MathWorks[®]

MATLAB EXPO 2017 😤 21

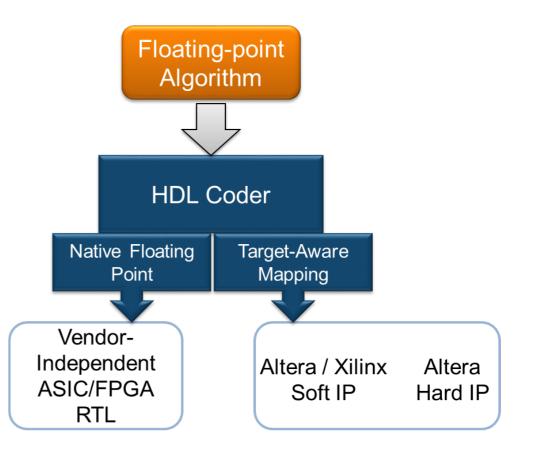

R2017a


Efficient Code Generation

Improve code quality with clone detection and dynamic memory allocation

- Refactor repeating library patterns and subsystem clones
 - Reduces redundancy
 - Improves reusability
- Generate C code that uses dynamic memory allocation from MATLAB Function blocks
 - Allocate memory as needed at runtime

Learn more at this session: Generating Optimized Code for Embedded Microcontroller Algorithms



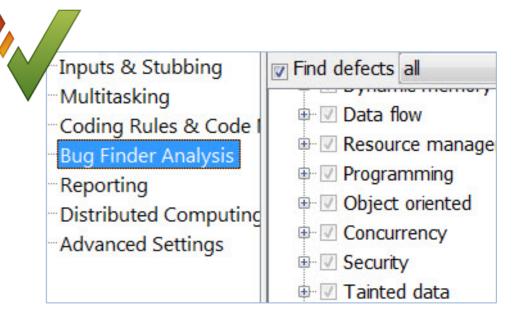
Floating Point HDL Code Generation

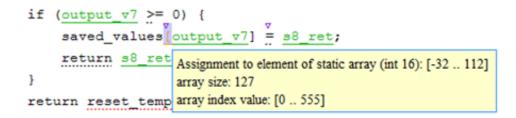
Generate HDL code directly from singleprecision floating point Simulink models

- Generates native floating-point arithmetic HDL code complying to IEEE-754 standard
- Optimize for speed versus area using custom block-level settings
- Balance numerical accuracy versus hardware resource usage by mixing integer, fixed-point, and floating point operations.

Learn more at this session: Designing and Implementing Real-Time Signal Processing Systems

MathWorks[®]

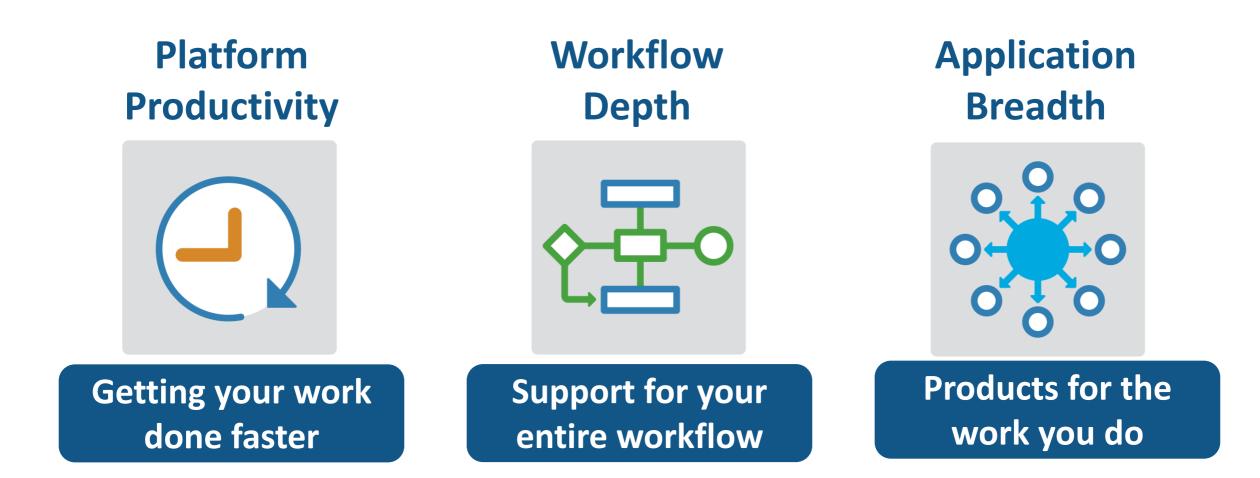

R2016b


Code Verification

Detect and prove the absence of run-time errors in your source code using static analysis

- Identify CERT C violations using defect checkers and coding rules
- Detect security vulnerabilities highlighted by the CERT C standard
- Addresses growing concern over software security with the rise in system connectivity

Learn more at this session: Prove the Quality and Achieve MISRA compliance with Formal Methods Based Technique for High Integrity applications



CERT C	Description	Polyspace Code Prover
ARR30-C	Do not form or use out-of-bounds pointers or array subscripts	Array access out of bounds

Powertrain Blockset

MATLAB EXPO 2017

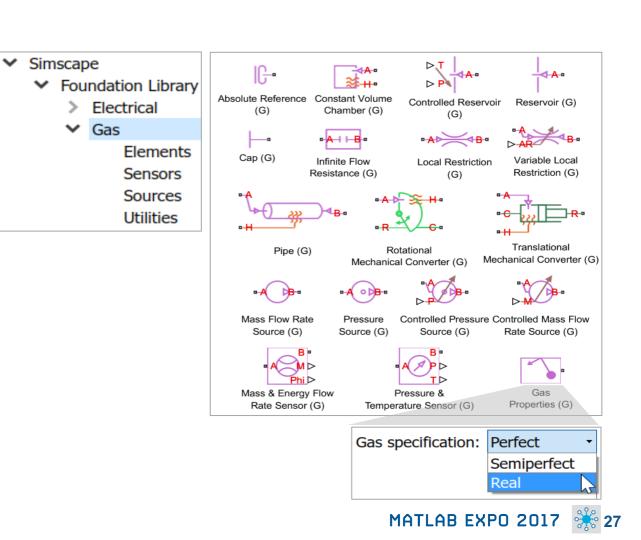

Model and simulate automotive powertrain systems

Drivetrain

Transmission

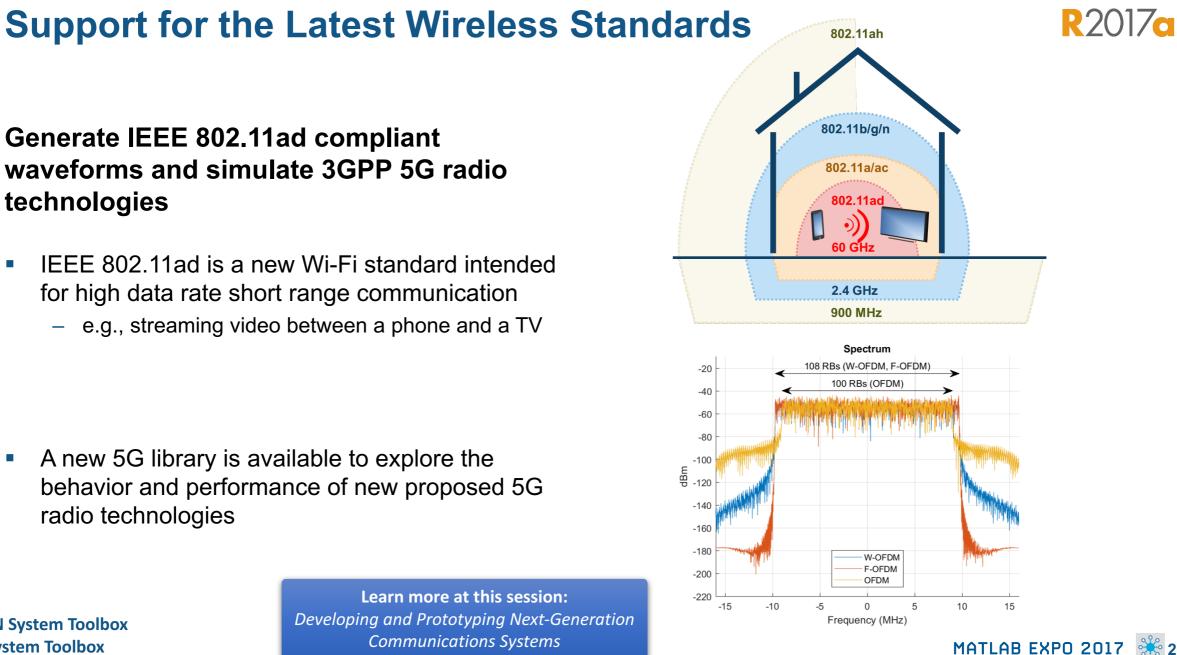
Accelerate your powertrain controls development process

- Simulate engine and controller subsystems, transmission assemblies, battery packs
- Use pre-built conventional, EV, and HEV vehicle models that can be parameterized and customized
- Run fuel economy and performance simulations
- Deploy fast-running models onto HIL systems
- Connect to 3rd party engine models for specific components of the system



R2017

Gas Domain and Block Library


Model gas systems with various levels of idealization

- Pneumatic actuation
- Gas transport in pipe networks
- Gas turbines for power generation
- Air cooling of thermal components
- Perfect gas, semiperfect gas, or real gas

WLAN System Toolbox LTE System Toolbox

Communications Systems

Machine Learning

"Learn" information directly from data without assuming a predetermined equation as a model

- Regression Learner app
 - Choose from multiple algorithms
 - Train and validate multiple models
 - Assess model performance, compare results, and choose the best model
- Code generation
 - Generate C code for predictive models that can be deployed directly to hardware devices

REGRESSION LEARNER	VIEW									
New Feature PCA Selection	Complex Tree Medium Tree	Simple Tree All	•	vanced Use Train Res Parallel	ponse Predicted vs. Res Plot Actual Plot F	Notel -	-			
FILE FEATURES		MODEL TYPE	۲	TRANING	PLOTS	EXPORT	-			
History			C	Response Plot X Pr	edicted vs. Actual Plot	Residuals Plot	A			
			10.01							
1 Tree			[Draft] 7/7 features							
and the complex free								Origin	al datase	t: cartable
						1	1	1	1	
				New Session						- 0
				tep 1 lect a table or matrix.	Step 2 Select predictors and	I response.				Step 3 Define validation method.
				table celeration	Name	Type	Range	Import a	IS	Cross-Validation
			Cy	linders	Acceleration	double	824.8	Predictor	~	Protects against overfitting by partitioning the da
				splacement	Cylinders	double	38	Predictor	~	into folds and estimating accuracy on each fold.
			MF	G	Displacement Horsepower	double	68 455 46 230	Predictor Predictor	~	
			Mo	del_Year sight	Model_Year	double	40	Predictor	~	
					Weight	double	16135140	Predictor	~	Cross-validation folds: 5 folds
✓ Current Model					Origin	char	7 unique	Predictor	~	•
Model 1: Draft					MPG	double	946.6	Response	~	
Model Type Preset: Complex Tree Minimum leaf size: 4 Surrogate decision splits: Off Feature Selection All features used in the model, PCA PCA disabled	before PCA				*					Holdout Validation Recommended for large data sets. Percent held out 25%
				Use columns as variables						O No Validation
										No protection against overfitting
				Use mus as variables						
				Use rows as variables						Read about validation

MATLAB EXPO 2017 👫 29

Deep Learning

Apply deep learning to computer vision problems

- Configure and train models using object detection algorithms (R-CNN, Fast R-CNN, Faster R-CNN)
- Leverage pretrained models for transfer learning (AlexNet, VGG-16, VGG-19)
- Import models from Caffe

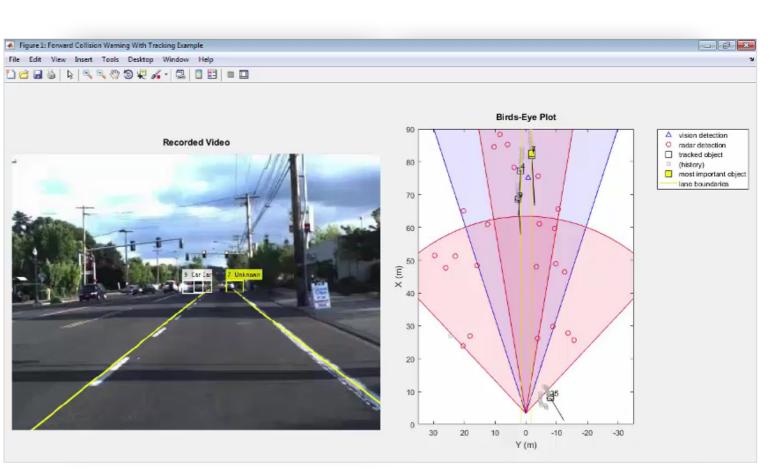
Neural Network Toolbox

Computer Vision System Toolbox

 Train networks using multiple GPUs (including on Amazon EC2)

> Learn more at this session: Simplifying Image Processing and Computer Vision Application Development

MathWorks[®]


MathWorks[®]

R2017a

Autonomous Driving Systems

Design, simulate, and test ADAS and autonomous driving systems

- Algorithm development
 - Sensor Fusion
 - Computer Vision
 - Deep learning
- Visualization tools
- Testing and verification
 - Ground Truth Labeling App
 - Traffic scenario generation

Learn more at this session: Developing and Validating Perception Systems for ADAS & Automated Driving

Automated Driving System Toolbox

Explore. Enroll. Excel.

New Training Courses

Code Generation for AUTOSAR Software Components

Testing Generated Code in Simulink

Accelerating and Parallelizing MATLAB Code

Communications System Design with MATLAB

SimEvents for Discrete-Event System Modeling

Software-Defined Radio with Zync using Simulink

New Training Modules

Object Oriented Design with MATLAB

Modeling RF Systems using MathWorks Tools

Modeling Radar Systems using Phased Array Systems Toolbox

Modeling Wireless Communication Systems using Phased Array Systems Toolbox

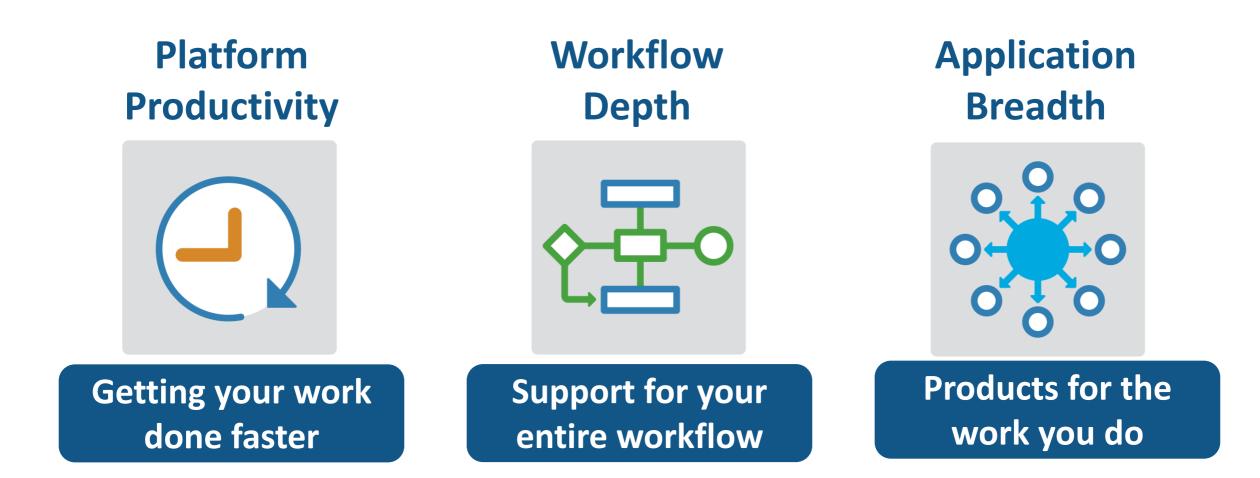
Real-Time Testing with Simulink Real-Time and Speedgoat Hardware

Self-Paced Online Training Offerings

MATLAB Onramp (Free)

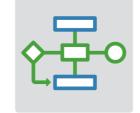
MATLAB Fundamentals

MATLAB Programming Techniques


MATLAB for Data Processing and Visualization

Machine Learning with MATLAB

MATLAB for Financial Applications


What's New in MATLAB and Simulink?

Platform Productivity

- Live Editor
- MATLAB Apps
- New (big) data types
- Modeling enhancements
- Release adoption

Workflow Depth

- Enterprise applications
- IoT systems
- 3rd party tool integration
- Standards compliance
- Code generation and verification

Application Breadth

- Powertrain systems
- New wireless standards
- Machine learning
- Deep learning
- Autonomous driving

MATLAB EXPO 2017

Thank You