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Digital healthcare for respiratory disease
▪ ResApp Health is developing the world’s first clinically-tested, regulatory- cleared 

respiratory disease diagnostic test and management tools for smartphones  
▪ Diagnosis of respiratory disease is the most common outcome from a visit to the 

doctor  
▪ Huge global market, 700M+ doctor visits annually for respiratory disease  

▪ Unique opportunity to integrate into telehealth providers’ existing platforms  
▪ Strong demand also seen within clinics, emergency rooms and outpatient 

facilities  
▪  Currently diagnosed using stethoscope, imaging (x-ray, CT), blood and/or 

sputum tests 
▪ ➝ Time consuming, expensive and not very accurate 
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Digital healthcare for respiratory disease
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https://www.resapphealth.com.au/solutions/



Respiratory disease diagnosis using only the sound of a 
patient’s cough

▪ The technology is based on the premise that cough sounds carry 
vital information on the state of the respiratory tract 

▪ We have taken a supervised machine learning approach to develop 
highly accurate algorithms which diagnose disease from cough 
sounds 

▪ In the next slide there is an example of a healthy cough and a 
pneumonia cough  
▪ Can you guess which one is healthy and which one is 

pneumonia? 

5



Two different coughs
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Automatic respiratory disease diagnosis
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1. Cough Detection
Audio 
stream 2. Cough Analysis Diagnosis

- Pneumonia 
- Asthma 
- Croup 
- Bronchiolitis 
- …

▪ The system consists of two main parts: 
▪ Front-end: finds cough sounds in a continuous audio stream 
▪ Cough Analysis: provides a diagnosis based on learned cough 

signatures for various respiratory diseases



Part 1: Detecting the coughs

▪ The front-end of the system finds the cough sounds in a continuous 
audio stream 

▪ The cough detection system is able to filter out speech and other 
background noises 

▪ The model has been trained with many hours of cough and non-
cough sounds
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Part 1: Detecting the coughs
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Audio Feature Extraction Neural Network Cough Detection

Cough EventsSignal Processing Toolbox™ Statistics and Machine  
Learning Toolbox™

E.g. MFCC



Audio features
▪ Audio features are calculated from the raw audio signal in processing windows  
▪ The audio features can be roughly divided into two categories: 

▪ Time domain features. E.g. Zero-Crossing Rate (ZCR) 
▪ Frequency domain features. E.g. Mel-Frequency Cepstral Coefficients 

(MFCC) 
▪ Traditionally feature vectors are used instead of raw audio as input for ML 

algorithms 
▪ Features reduce the dimensionality of the input 
▪ Some features, like MFCC, approximates the human auditory system's 

response
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Audio features
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Feed-forward neural network
▪ Neural Network is a collection of artificial neurons 
▪ Each neuron is a function of weighted sum of its inputs (+a bias). 
▪ Number of the inputs equals to the number of features in the 

feature vector 
▪ One can have any number of hidden layers and any number of nodes 

in each layer
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Example of detecting a cough
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1. Audio Signal 
2. Probability output of a neural 

network 
3. Detected coughs



Part 2: Analysing the coughs

▪ The cough sounds are fed into the analysis part  
▪ It extracts various audio features for each cough  
▪ The features are then fed into previously trained logistic regression 

models and classified into diseases or control classes 
▪ Each model is a binary classifier (control vs. disease). I.e. the 

approach is so called one vs. many 
▪ Number of coughs are used per diagnosis to increase the accuracy 

of the diagnosis 
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Part 2: Analysing the coughs
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Cough  
Audio
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Diagnosed Disease
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Easy to use, instant diagnosis using 
only a smartphone

▪ The algorithms are developed using 
Matlab™ 

▪ The final algorithms are deployed on 
various smartphone platforms 

▪ The end-to-end diagnosis runs real 
time on a phone 

▪ Easy to use
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Verified by compelling pediatric clinical evidence
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Breathe-Easy Study Pediatric Results Sensitivity Specificity Accuracy

Pneumonia vs. no respiratory 100% 95% 97%

Asthma vs. no respiratory 97% 92% 95%

Bronchiolitis vs. no respiratory  100% 100% 100%

Croup vs. no respiratory 94%   100% 99%

URTI vs. no respiratory 100% 95% 96%

Pneumonia, croup or bronchiolitis vs. URTI4 89-100% 90-95% 89-98%

Differential diagnosis of pneumonia, croup, 
URTI and bronchiolitis 91-99% 89-98% 89-98%



Building strong clinical evidence in adults
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Breathe-Easy Study Adult Results Sensitivity Specificity Accuracy

COPD vs. no respiratory 100% 96-100% 98-100%

Asthma vs. no respiratory 91% 91-93% 91-92%

Pneumonia vs. no respiratory  97-100% 100% 98-100%

URTI vs. no respiratory 100% 100% 100%

Asthma vs. COPD 93% 96% 94%

Pneumonia vs. Asthma 92% 81% 88%

Pneumonia vs. COPD 92% 92% 92%



Machine learning: Lessons learned
▪ The simplest model that fits the data is also the most probable model 

(Occam’s razor) 
▪ Why is simple better: 

▪ There are fewer simple hypotheses than complex ones. If we manage to 
fit a less likely model (i.e. a simple one) it is more significant than fitting 
a complex model 

▪ If our in-sample error rate is very small, but out-of-sample error rate is 
big, our model is too complex for the given data. The model has learned 
the data too much (overfit)

19



Machine learning: Lessons learned
▪ Partition your data into three sets 

▪ Training set (>70%) 
▪ train your model with this data  

▪ Dev set (<15%) 
▪ tune your parameters with this data  

▪ Test set (<15%) 
▪ estimate your accuracy with this set 
▪ Don’t over use the test set. For example, if you run 100 

different experiments and test them with the same test and 
then pick the best result. This result is not a good estimate 
anymore for the out-of-sample error rate
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Machine learning: Lessons learned
▪ Use single number evaluation metric:  

▪ Helps you quickly evaluate algorithms and models, and 
therefore iterate faster 

▪ For example use F1-score instead of recall and precision.   
▪ Analyse error systematically  

▪ Categorise the errors and find the single reason that 
contributes most to the error rate 

▪ Start addressing the error sources from the most significant one 
▪ For example: with the cough detection we found that cries 

were a prominent source of false positives
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