

A Minimum Viable Machine Learning-based Speech Processing Solution for Facilitating Early Diagnosis of Parkinson's Disease

Luca Parisi, Auckland Bioengineering Institute (ABI), The University of Auckland Marianne Lyne Manaog, MedIntellego[®], Auckland, New Zealand

Presentation Outline

Problem Definition and Motivation
The Disease of Interest: Parkinson's Disease
High-level Objectives
Value Proposition – A Minimum Viable AI Solution
Findings
Discussion

Conclusion

https://au.mathworks.com/help/nnet/gs/classify-patterns-with-a-neural-network.html

A Scheme of a Multi-layer Perceptron (MLP)based Learning Classifier

Problem Definition and Motivation

motor problems \longrightarrow PD leads to untreatable motor symptoms [1] **Parkinson's Disease (PD)** loss of postural reflexes \longrightarrow dopamine replacement therapy leads to frequent complications [2]

There is no objective method for early diagnosis of PD.

Jankovic (2008)

webmd.com

[1] Fahn et al., 2003, Ann N Y Acad Sci; [2] Jankovic, 2008, J Neurol Neurosurg Psychiatry.

Importance of Speech Processing Applications

http://msutoday.msu.edu/360/2013/detecting-parkinsons-for-better-treatment/

http://www.dspguide.com/graphics/F_26_6.gif

Feature	Туре			
Jitter (local)				
Jitter (local, absolute)				
Jitter (rap)	Frequency variables			
Jitter (ppq5)				
Jitter (ddp)				
Number of pulses				
Number of periods	Pulse variables			
Mean period				
Standard deviation of period				
Shimmer (local)	Amplitude variables			
Shimmer (local, dB)				
Shimmer (apq3)				
Shimmer (apq5)				
Shimmer (apq11)				
Shimmer (dda)				
Fraction of locally unvoiced frames				
Number of voice breaks	Voicing variables			
Degree of voice breaks	-			
Median pitch				
Mean pitch	Pitch variables			
Standard deviation				
Minimum pitch				
Maximum pitch				
Autocorrelation	Harmonicity variables			
Noise-to-harmonic				
Harmonic-to-noise				

Patient data: Dysphonia measures (in the table) and UPDRS from the UCI database.

Main Features to Diagnose PD

Methods:

ReliefF-, partial least square-, Multi-layer Perceptron-based algorithms.

Results:

Three main diagnostic features: UPDRS (main clinical score of PD), mean pitch, standard deviation of the period.

Methodology

Artificial Intelligence-based classifiers:

- self-organising maps,
- Lagrangian Support Vector Machine and
- multi-layer perceptron.

Artificial Neural Networks to Aid Diagnosis of PD

Multi-layer Perceptron (MLP)

Machine Learning (ML) to Aid Diagnosis of PD

Adapted from: Cross Validated, 2014

Lagrangian Support Vector Machine

Adapted from Mangasarian and Musicant, 2001

Overly Sophisticated Attempts of Diagnosing PD

Author/s	Year	Journal	PWP	Controls	Algorithm/s	Accuracy	Reliability
Hariharan <i>et al</i> .	2014	Comput Methods Programs Biomed	23/48	8/20	One FP, four FSs, three LCs	100%	Five PMs
Alemami and Almazaydeh	2014	J Am Sci	48/48	20/20	Two LCs	93.30%	Two PMs
Yang et al.	2014	PLoS ONE	23/48	8/20	Two FSs, three LCs	91.80%	Three PMs
Behroozi and Sami	2016	Int J Telemed Appl	20/48	20/20	Two FSs, four LCs	87.50%	Three PMs
Zhang <i>et al</i> .	2016	BioMed Eng OnLine	48/48	20/20	Two FSs, two LCs	87.80%	Two PMs

FP = feature pre-processing; FS = feature selection; LC = learning classifier; PM = performance measure

The importance of Deploying MATLAB

MATLAB toolboxes "nftool" and "nprtool" \rightarrow Reduced development time and easy-to-use visualisation tools.

📣 Neural Pattern Recognition (nprtool)

Welcome to the Neural Pattern Recognition app.

Solve a pattern-recognition problem with a two-layer feed-forward network.

Introduction

In pattern recognition problems, you want a neural network to classify inputs into a set of target categories.

For example, recognize the vineyard that a particular bottle of wine came from, based on chemical analysis (wine_dataset); or classify a tumor as benign or malignant, based on uniformity of cell size, clump thickness, mitosis (cancer dataset)

Results

- Classification accuracies: 84.52% for self-organising maps, 98.27% for Lagrangian Support Vector Machine and **100% for Multi-layer Perceptron**.
- Mean squared error (MSE): 1.91×10^{-14} .
- Area under the Receiving Operating Characteristic curve (AUC): 1.

Conclusion

- > Assessment of clinical potential of Artificial Intelligence-based classifiers;
- > Feature selection of parameters for early diagnosis of PD;
- Simple method for early diagnosis of PD: Multi-layer perceptron;
- > Applications in a clinical setting.

Acknowledgements

Any questions

Thank you