MATLAB CONFERENCE 2017

Introduction to Data Analytics with MATLAB

David Willingham

WITH SOFTWARE (and smart people)

ANYTHING IS POSSIBLE

Business and Transactional Data

Repositories

- Databases (SQL)
- NoSQL
- Hadoop

File I/O

- Text
- Spreadsheet
- XML

Web Sources

- RESTful
- JSON
- HTML
- Mapping
- Financial datafeeds

Analytics that increasingly require **both business and engineering data**

Traditional Data Sources Dominate, But Many New Sources Are Planned

Engineering, Scientific, and Field Data

File I/O

- Text
- Spreadsheet
- XML
- CDF/HDF
- Image
- Audio
- Video
- Geospatial

Communication Protocols

- CAN (Controller Area Network)
- DDS (Data Distribution Service)
- OPC (OLE for Process Control)
- XCP (eXplicit Control Protocol)

Real-Time Sources

- Sensors
- GPS
- Instrumentation
- Cameras
- Communication systems
- Machines (embedded systems)

"Data is the sword of the 21st century, those who wield it the samurai."

Google's Former SVP - Jonathan Rosenberg

- Big data how to create it, manipulate it, and put it to good use.
- "If you want to work at Google, make sure you can use MATLAB."

2017 Gartner Magic Quadrant – Data Science

MATLAB for Data Analytics

Customer Examples

Online optimization of building energy use

- Real-time, cloud-based system
- Combines analytics with optimization for predictive control of single-building HVAC
- Energy consumption reduced 15-25%

Online engine health monitoring

- Real-time analytics integrated with enterprise service systems
- Predict sub-system performance (oil, fuel, liftoff, mechanical health, controls)
- Improve aircraft availability and reduce maintenance costs

Cloud-based wheeze analysis

- Medical device to monitor and manage asthma and COPD
- Leverages analytics in cloud and embedded system

<u>http://www.mathworks.com/company/events/conferences/matlab-</u> conference-australia/2015/abstracts.html?expand=cp&#cp_session1

Data Analytics Workflow

MATLAB CONFERENCE 2017

Automate

Frontier Advisors Develops Web-Based Platform for Portfolio Analytics

Challenge

Provide clients with an industry-first web platform for portfolio modeling and analytics

Solution

Use MATLAB to develop and test analytics modules, and use MATLAB Compiler SDK to deploy them into a production .NET environment

Results

- Quantitative development decoupled from interface development
- Stable, responsive system deployed
- Rapid delivery of new features enabled

"MATLAB and MATLAB Compiler SDK enabled us to rapidly deliver a sophisticated portfolio analytics web application with confidence that it will return accurate results extremely quickly, ensuring a highly usable and stable platform for our clients."

Lee Eriera

Frontier Advisors

Today's Objectives

- Introduce you to data analysis with MATLAB
- Show how you can overcome common data analysis challenges with MATLAB
- Demonstrate multiple ways of sharing your analysis and results with others

Common Data Analysis Challenges using Excel

- Complex calculations
- Messy Data
- Speed of Execution
- Automation
- Batch Processing
- Report Generation
- Deployment

Demo: Solar Radiation Estimation

Introduction to Data Analysis with MATLAB

- Goal:
 - Estimate daily mean global solar radiation given low cost and easily obtained measurements
- Approach:
 - Process historical measurements
 - Develop predictive model
 - Document analysis in a report
 - Apply analysis on multiple files

Modeling Global Solar Radiation

$$R_s = a (1 + bH)(1 - e^{-c \Delta T^n})$$

Solar Ratio (\mathbf{R}_{s}) = $\frac{\text{Global solar radiation}}{\text{Extraterrestrial solar radiation}}$

Daily Temperature Difference $(\Delta \mathbf{T}) = T_{DailyMax} - T_{DailyMin}$

H is Relative Humidity

a,b,c,n are the model coefficients

Demo Summary

Solar Radiation Estimation

- Products Used
- MATLAB
- Curve Fitting Toolbox

MATLAB CONFERENCE 2017

Automate

Machine Learning

Machine learning uses data and produces a program to perform a task

Demo: Machine Learning Using Mobile Phone Data

Data:

- ➢ 3-axial Accelerometer data
- ➤ 3-axial Gyroscope data

CLASSIFICATION LEARNER VIEW				· · · · · · · · · · · · · · · · · · ·					
Import Data	Feature Selection	A Boosted Trees	A Bagged Trees	Si Dis	ubspace Subspace KNN	D Train	Advanced	Confusion Matrix	Export Model
FILE	FEATURES		CLA	SSI	FIER		TRAINING	PLOTS	EXPORT
Data Brov	vser				Scatter Plot 🛛 🗶				
▼ History					Variable on X axis:		Scatter Plot of human Aci		
SVM Linear SVM		86.4%		avg_body_gyro_x_test		0.35	Scatter Flot	Ji numanAu	
SVM BoxConstraint = 3		87.1%		Variable on Y axis:	0.3	1 0.2			
KNN Fine KNN		94.9%		stdv_total_acc_y_test	•	0.5			
KNN NumNeighbors = 2		90.7%		Correctly classified	0.25				
KNN NumNeighbors = 1		94.1%		 Vvaiking ClimbingStairs Sitting 		A 0.2	×	×	
KNN NumNeighbors = 2		91.7%						×××	
Ensemble NumLearners = 100		95.9% -	75	Misclassified - true clas	s is:	stdv_to	×		
▼ Current model			1	 ClimbingStairs Sitting 		0.1	•	••	
Type: Ensemble Preset: < Custom >						0.05			
Data Transformation: None Status: Trained				Show Classifier Result	s				
							0		

Sharing Results from MATLAB

Automatically generate reports

Create and package applications

Deploy to other environments

MATLAB Programs Can be Shared With Anyone

Share With Other MATLAB Users

Share With People Who do Not Have MATLAB

Write Your Programs Once Then Share To Different Targets

21

3rd Party Excel Add Ins for Forecasting

- Challenges:
 - Manual
 - Automation
 - Batch Processing
 - Tuning (Optimizing)
 - Speed of Execution
 - Report Generation