

# **Developing ISR Communication Systems Using The MathWorks' Tools**

Tim Reeves Applications Engineer





## **UAV-based Communications and ISR**





### **Design Objectives**

 Increase useable range of UAV from 100 km to 200 km and maintain video performance

## **Design Approach**

 Explore different design alternatives including use of different radio implementations and / or different antenna selections.



# **System Design Challenges**

- Multiple design disciplines
  - Mechanical modeling
  - Communication System modeling
  - Video and Image Processing modeling
- Design Groups working at different locations
  - Work in different facilities / different time zones
- What will happen during the final integration stage?



# Required System Design Capabilities

- Single Design Environment supporting multiple design disciplines
  - Libraries of pre-built blocks that cover mechanical, communications and video processing design domains
- Continuous Design Verification
  - Single design environment that can be used so as to validate the design at each stage of the design process
- Model Sharing
  - Be able to share models between different teams and locations



#### **External Factors**

- Shrinking development cycles
  - Pressure from customers to develop systems in a shorter time frame with superior performance.
- Growing Design Complexity
  - Vehicles and other related equipment need to have more functionality than ever before.



#### **UAV** Demonstration





#### **Custom Libraries**

- Allows others access to custom Simulink subsystems that you have developed
- Repository of models that you or your colleagues can use in future designs





#### **Embedded MATLAB Function Block**

- Fast execution
- Generates C code (with Real-Time Workshop®)
- Multiple input and output ports
- Modular code: multiple blocks
- Integrated editor



```
- | D | X
         function y = PointingLossSinc(u,aob,rDish,Fc,plotOn)
      % PointingLossSinc applies an antenna pointing loss to the
      % input signal u. based on a pointing error of ach (Angle Off Boresight)
      % for an antenna with a sinc rolloff.
      % The units for aob is radians
      % The equation for the Sinc Antenna pattern is taken from
      % Systems Analysis and Design Using MATLAB by
      % Bassem Mahafza (eqn 1.116)
      % You should place this block in front of an AWGN channel block and
      % set the power for the channel block as if the PointingLoss block was
      % not there.
      eml.extrinsic('polar')
      eml.extrinsic('figure')
      gain = zeros(size(u));
23
24
25
26
27
28
29
      % Set antenna dimensions and signal wavelength
      lambda = 3e8/Fc;
      % Calculate antenna pattern
      for i = 1:length(gain)
          if aob(i) == 0
             gain(i) = 1;
              gain(i) = 1-((pi*rDish/lambda)^2)*(aob(i)^2)/36;
Ready (Locked) (Library)
                             Ln 1 Col 1
```



## **End Results**

| Design Challenge                           | Solution                                                                                                     |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Design and verify communications subsystem | - model different communications schemes using a library of Radio Models                                     |
| Design and verify Video compressions       | Use Video and Image Processing Blocksets to model video algorithms                                           |
| Access impact of antenna selection         | Incorporate MATLAB antenna models in Simulink model using Embedded MATLAB                                    |
| Access impact of stabilization system      | Model antenna gimbal and controller with SimMechanics                                                        |
| Integrate systems in simulation            | Use Simulink to integrate multiple domains into single system level model                                    |
| Optimize design at a system level          | Model a number of different design alternatives as well as key parameters such as maximum operating distance |



# **Next Steps**

- Incorporate this model into a broader system simulation
  - flight dynamics
  - target tracking



#### **Products Used**

- Simulink
  - Embedded MATLAB blocks
- Video and Imaging Processing Blockset
  - Segmentation, motion estimation, morphology and more
- Communications Blockset
  - Source coding, error correction, modulation and more
- Signal Processing Blockset
  - Estimation, filtering, linear algebra, statistics, FFT, and more
- SimMechanics
  - Physical Modeling