UCSD AUVSI

Unmanned Aerial System Team

Agenda

- Project background and history
- System design overview
 - Gimbal Stabilization
 - Target Recognition
- Lessons Learned
- Future Work
- Q&A

UCSD AUVSI Background

- Student Unmanned Aerial System (UAS) team
 - 10 undergraduates from electrical, computer, and aerospace engineering
 - Split into groups working on computer vision, user interaction, and onboard systems

AUVSI Student UAS Competition

- Annual international competition
 - Put on by AUVSI seafarers chapter
 - Around 20 schools competing
 - \$78,000 in prize money awarded last year
 - First place took \$14,000
- Held at Webster Field, Maryland
 - June 16-22

The Mission

- Perform a fully autonomous flight mission
- Navigate through a series of waypoints
- Locate and identify an unknown number of targets within a designated search area
- Re-task in flight to locate target outside of search area

Last Year's Approach

- Still cameras facing ground
- Image processing onboard

This Year's Approach

- System driven design
 - Model each subsection independently
- Geo-pointing gimbaled video camera
- Real time autonomous target detection and recognition

System Overview

System Overview

- Subsystems are divided into independent units
 - Individual components can be easily replaced
 - Aircraft is more cleanly organized.

Geo-Pointing Gimbaled Camera

- Goal is to track a GPS point to 50ft accuracy.
- Accept either GPS position or position changes as inputs

Physical Gimbal Design

- Physical Design Requirements
 - 1 degree Pointing accuracy
 - 15 degree/s Tracking speed
 - 90 degrees of tilt
 - 360 degree continuous rotation
- Emulate real world gimbaled cameras.

Gimbal Model Validation using MATLAB

- Gimbal currently just out of the physical design phase, fabrication is almost complete.
- Next step will be model validation using MATLAB.

Control Law Development using SISO tool

 Using gimbal model develop real time controller using the SISO tool function and other controls tools.

Path Prediction using MATLAB

- Developed using past flight data files
- Designed using built in MATLAB functions including the Kalman filter
- Goal is to increase gimbal response time and reduce error by using the predicted path of the airplane to augment the control law

Path Prediction Results

Computer Vision Systems

- The challenge:
 - Correctly geo-reference all imagery
 - Identify candidate regions for targets in real time
 - Analyze these regions to determine target parameters

Leveraging MATLAB

- The three vision challenges can be developed independently
- Developed and prototyped in MATLAB before implementing on specialized hardware: graphics processing units (GPUs)

etareliminari e etareliminari + 1:

etter = lecterichungs / lecetistest files:

F I'M ARREST AT THE REST AT REST HOUSE IN

- Considerably faster to develop
- Far easier to test
- Vectorized code translates well to GPU

Candidate Region Selection

Saliency – A Model Independent Algorithm

Input Output

Output

Target Recognition – A Model Dependent Algorithm

- Create model of targets we expect to encounter
 - Solid colored shapes with a solid colored alphanumeric character
- Some examples (letter choice purely random):

Target Recognition

- Utilize several Matlab toolboxes for recognition:
 - Image Processing used in everything
 - Statistics used during image segmentation
 - Wavelet used to compute features in recognition

Lessons Learned

- The development of a full system layout and plan before doing any design greatly increased the complexity of the system we were able to design.
 - Past student projects were much less ambitious than we were here.
- Working on a primarily "aerospace" project with computer and electrical engineers allows for the development of much more robust systems.

Future Goals

- Future goal: Integrate target recognition with gimbal control with the goal of fully autonomous search.
- Field test gimbal system with and integrate with path prediction.
- Win competition!

