Modeling Motion Control Systems in Air and

Space Vehicles

Terry Denery, PhD
The MathWorks

© 2007 The MathWorks, Inc.

MathWorks
Aerospace and Defense Conference '07

MATLAB®&SIMULINK®

MATLAB® SIMULINK®

MATLAB® & SIMULINK®

MATLAB®&SIMULINK®

MATLAB® & SIMULINK®

MATLAB®&SIMULINK®

MATLAB®&SIMULINK®

Agenda

- Linkage motion in accelerating vehicles
- Adaptation to workflows and adoption of standards
- Demonstration
 - Flight simulation for landing gear design
 - Flight simulation for satellite design

Linkage Motion in Accelerating Vehicles

Inertial (Non-Accelerating) Reference Frames

$$\vec{\mathbf{F}} = m\mathbf{a}$$

$$Not$$

$$An Option!$$

Non-Inertial (Accelerating) Reference Frames

Linkage Motion in Accelerating Vehicles

Model the Entire System

Linkage Motion in Accelerating Vehicles

Adaptation and Adoption

Adaptation

- 6DOF methods to include Multi-body
- Adapting to Cross-Domain Collaboration

Adoption

Standards for Describing Position and Orientation

SimMechanics

Multi-Body Methods Aerospace Blockset **Controller**

MathWorks

Aerospace and Defense Conference '07

Adopting Standards for Reporting Position

V_{ecef} (m/s) $F_{XYZ}(N)$ **ECEF** φθψ (rad) Quaternion DCM. DCM_{be} M_{XVZ} (N-m) DCM V_{h} (m/s) Fixed Mass ω_{rel} (rad/s) ∞ (rad/s) Mech d∞/dt $A_h (m/s^2)$ **SimMechanics** Connector

Demonstration – Flight Simulation for Designing Landing Gear

Two-Wheel Successful Landing

MathWorks

Aerospace and Defense Conference '07

One-Wheel Failed Landing

MathWorks
Aerospace and Defense Conference '07

One-Wheel Successful Landing

MathWorks

Aerospace and Defense Conference '07

- Employed 6-DOF based on SimMechanics
- Developed contact model for wheel-ground interaction
- Identified method for linkage design in air vehicles

Demonstration – Flight Simulation of Satellite

- Maximize power through solar array position
- Point camera at targets

Demonstration – Flight Simulation of Satellite

- Developed pointing system
- Developed motion model for orbital mechanics
- Identified general method for linkage control design in space vehicles

What Next?

- Design Hydraulic Actuation for Landing Gear
- Design Electric Actuation for Satellite
- Design Reaction Wheel Actuation for Satellite

Complete solution enabled for mechanics, power transmission, and actuation

In summary

- Developed flight simulations
 - Landing gear design
 - Satellite design
- Simulink enables the adaptation and adoption to create collaborative workflow
- Established general solution for motion systems in air and space vehicles