
©
20

07
 T

he
 M

at
hW

or
ks

, I
nc

.

® ®

Model-Based Design for Safety Critical 
Applications
Bill Potter
The MathWorks



2

® ®

Attributes of Safety Critical Systems

Reliably perform intended function
Contain no unintended function
Implemented with redundancy
Contain fault detection
Robust design
Robust code



3

® ®

Attributes of Safety Critical Process

Complete and correct requirements
Design standards are applied
Coding standards are applied
Bi-directional traceability
Requirements based testing
Robustness verification
Coverage analysis
Safety Analysis 
Failure Modes and Effects Analysis (FMEA)



4

® ®

Safety-Critical Model-Based Design Workflow and Activities

Controller Design

Simulate to Verify Design

Generated Source Code

Executable Object 
Code

Hardware

Design Process

Coding Process

Integration Process

• Controller design
• Correct
• Robust
• Traceable
• Conforms to standards
• FMEA

• Generated code
• Correct
• Robust
• Traceable
• Conforms to standards

•Software-Software integration
•Hardware-Software integration
•Processor in-the-loop
•SystemTest
•Simulink Report Generator

• Compiled code
• Correct
• Robust
• Coverage Analysis

•Real-Time Workshop® Embedded Coder
•PolySpace Verifier
•Simulink Report Generator

•MATLAB
•Simulink/ Stateflow
•Simulink Verification & Validation
•Simulink Design Verifier
•SystemTest
•Simulink Report Generator

Goals
• Requirements Document
• Plant model
• Complete
• Correct
• Test cases
• Safety Analysis

Requirements

Simulate prototype to 
Validate Requirements

Requirements Process
•DOORS, TCE, MSWord, etc
•MATLAB®
•Simulink®
•Stateflow®
•Simulink Report Generator



5

® ®

Requirements Process for Model-Based Design

Functional, operational, and safety requirements
Exist one level above the model
Models trace to requirements

Requirements validation
Prove requirements are complete and correct
Simulation is a validation technique 
Traceability can identify incomplete requirements
Model coverage can identify incomplete requirements

Requirements based test cases
Traceability of tests to requirements



6

® ®

Simulation example – controller and plant



7

® ®

Requirements trace example – view from 
DOORS to Simulink



8

® ®

Requirements trace example – view from 
Simulink to DOORS



9

® ®

Requirements-based test trace example – view 
from Simulink Signal Builder block to DOORS



10

® ®

Model coverage report example



11

® ®

Requirements Process take-aways

Early requirements validation
Eliminates rework typically seen at integration on 
projects with poor requirements

Early test case development
Validated requirements are complete and verifiable 
which results in well defined test cases

Requirements management and traceability
Requirements management interfaces provide 
traceability for design and test cases



12

® ®

Design Process for Model-Based Design
Model-Based Design

Create the design - Simulink and Stateflow 
Modular design for teams - Model Reference
Model architecture/regression analysis - Model 
Dependency Viewer
Documented design - Simulink Report Generator

Conformance to standards
Design conforms to standards – Model Advisor

Traceability
Design to requirements - Requirements Management 
Interface



13

® ®

Example detailed design including model 
reference and subsystems

Subsystem Reference Model

Top Model



14

® ®

Model dependency viewer



15

® ®

Example Model Advisor report



16

® ®

Design Verification for Model-Based Design

Requirements based test cases
Automated testing using SystemTest/Simulink V&V
Traceability using Requirements Management Interface
Capability to inject faults for FMEA

Robustness testing and analysis
Built in Simulink run-time diagnostics
Formal proofs using Simulink Design Verifier

Coverage Analysis
Verify structural coverage of model
Verify data coverage of model



17

® ®

SystemTest for requirements based testing



18

® ®

SystemTest – example report
Data Plotting and expected

results comparisons

Summary of results



19

® ®

Signal Builder and Assertion Blocks



20

® ®

Model coverage report example – signal ranges



21

® ®

Simulink® Design Verifier – Coverage Test

Generated Test Cases

Model Test Report



22

® ®

Simulink Design Verifier – Objective Test

Generated Test Cases

Model with Constraints and Objectives Test Report



23

® ®

Simulink Design Verifier – Property Proving

Property to be proven

Model with Assumption and Objective Report



24

® ®

Design Process take-aways

Modular reusable implementations
Platform independent design and code
Scalable to large teams

Consistent and compliant implementations
Common design language 
Automated verification of standards compliance

Efficient verification process
Develop verification procedures in parallel with design
Automated analysis techniques
Coverage analysis early in the process



25

® ®

Coding Process for Model-Based Design

Incremental code generation
Model Reference

Traceability
HTML Code Report 

Source code verification
Complies with standards using PolySpace MISRA-C 
Checker
Accurate, consistent and robust using PolySpace 
Verifier



26

® ®

dependent models rebuilt

model changed and rebuilt

Incrementally Generate Code
Incremental code generation 
is supported via Model 
Reference
When a model is changed, 
only models depending on it 
are subject to regeneration 
of their code

Reduces application build 
times and ensure stability of 
a project’s code
Degree of dependency 
checking is configurable



27

® ®

Add Links to Requirements

Requirements appear in the code



28

® ®

Compliance history of generated code
• Our MISRA-C test 
suite consists of 
several example 
models

• Results shown for 
most frequently
violated rules

Improving MISRA-C compliance with each release, e.g.
Eliminate Stateflow goto statements (R2007a)

Compliant parentheses option available (R2006b) 

Generate default case for switch-case statements (R2006b)

MathWorks MISRA-C Compliance Package available upon 
request http://www.mathworks.com/support/solutions/data/1-1IFP0W.html



29

® ®

Coding Process take-aways

Reusable and efficient source code
Traceability
MISRA-C compliance
Static verification and analysis



30

® ®

Integration Process for Model-Based Design

Executable object code generation
ANSI/ISO C or C++ compatible compiler
Makefile generation capability
Run-time libraries provided

Executable object code verification
Capability to build interface for Processor-In-the-Loop 
(PIL) testing
Analyze code coverage during PIL
Analyze execution time during PIL



31

® ®

Processor-in-the-Loop (PIL) Verification
- Execute Generated Code on Target Hardware

Embedded Target

Simulink

Plant Model
Algorithm

(Software Component)

C
od

e 
G

en
er

at
io

n

Execution

• on host and target
• non-real-time

Communication via one of

• data link e.g. serial, CAN, TCP/IP
• debugger integration with MATLAB



32

® ®

Integration Process take-aways

Integration with multiple development 
environments
Efficient processor in-the-loop test capability



33

® ®

Wrap-up
Tools to support the entire safety critical development 
process

Requirements
Design
Code
Executable
Verification

MathWorks is participating on SC-205/WG-71 committee 
which is working on Revision C of DO-178
See the various demos in the exhibit area


	Model-Based Design for Safety Critical Applications
	Attributes of Safety Critical Systems
	Attributes of Safety Critical Process
	Safety-Critical Model-Based Design Workflow and Activities
	Requirements Process for Model-Based Design
	Simulation example – controller and plant
	Requirements trace example – view from DOORS to Simulink
	Requirements trace example – view from Simulink to DOORS
	Requirements-based test trace example – view from Simulink Signal Builder block to DOORS
	Model coverage report example
	Requirements Process take-aways
	Design Process for Model-Based Design
	Example detailed design including model reference and subsystems
	Model dependency viewer
	Example Model Advisor report
	Design Verification for Model-Based Design
	SystemTest for requirements based testing
	SystemTest – example report
	Signal Builder and Assertion Blocks
	Model coverage report example – signal ranges
	Simulink® Design Verifier – Coverage Test
	Simulink Design Verifier – Objective Test
	Simulink Design Verifier – Property Proving
	Design Process take-aways
	Coding Process for Model-Based Design
	Incrementally Generate Code
	Add Links to Requirements
	Compliance history of generated code
	Coding Process take-aways
	Integration Process for Model-Based Design
	Processor-in-the-Loop (PIL) Verification�- Execute Generated Code on Target Hardware
	Integration Process take-aways
	Wrap-up

