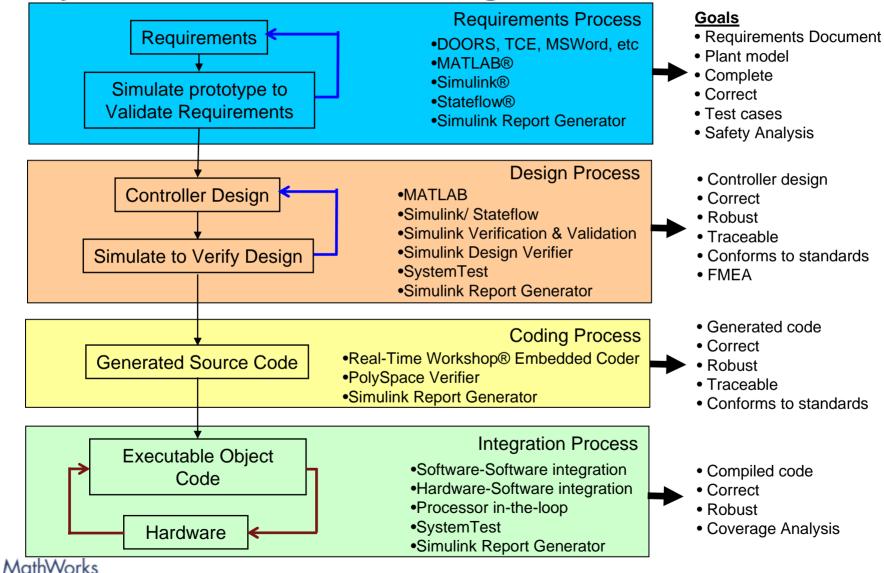


Model-Based Design for Safety Critical Applications

Bill Potter The MathWorks

Attributes of Safety Critical Systems

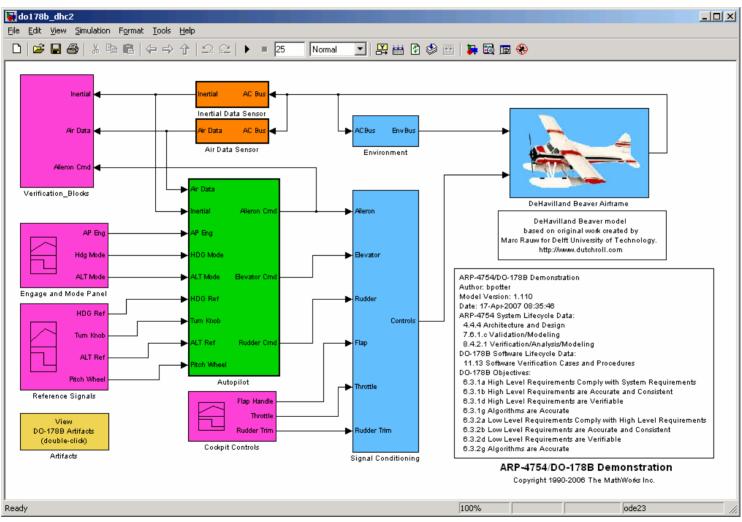
- Reliably perform intended function
- Contain no unintended function
- Implemented with redundancy
- Contain fault detection
- Robust design
- Robust code



Attributes of Safety Critical Process

- Complete and correct requirements
- Design standards are applied
- Coding standards are applied
- Bi-directional traceability
- Requirements based testing
- Robustness verification
- Coverage analysis
- Safety Analysis
- Failure Modes and Effects Analysis (FMEA)

Safety-Critical Model-Based Design Workflow and Activities


Aerospace and Defense Conference '07

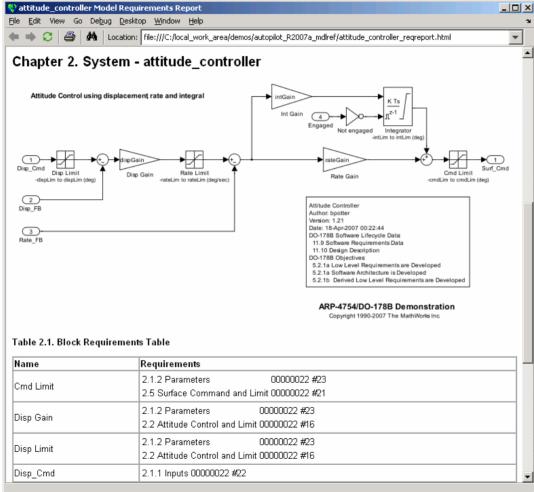
Requirements Process for Model-Based Design

- Functional, operational, and safety requirements
 - Exist one level above the model
 - Models trace to requirements
- Requirements validation
 - Prove requirements are complete and correct
 - Simulation is a validation technique
 - Traceability can identify incomplete requirements
 - Model coverage can identify incomplete requirements
- Requirements based test cases
 - Traceability of tests to requirements

Simulation example – controller and plant

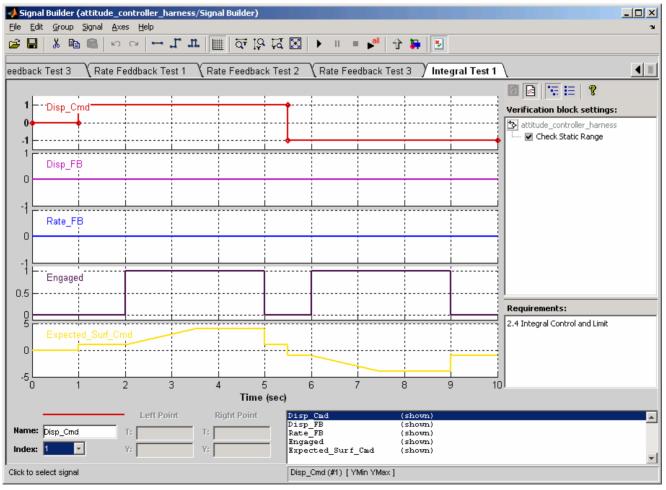
MathWorks Aerospace and Defense Conference '07

The MathWorks



Requirements trace example – view from DOORS to Simulink

👨 Formal module '/Autor	oilot Project	/Attitude Controller Derived Requirements' current 0.0 - DOORS
File Edit View Insert Li	nk Analysis	Table Tools User MATLAB Help
🖬 🖨 😭 │ 👗 🖻 🖻		✓ ■ ■ ■ I U # □ □ □ = □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
Standard view	▼ All leve	* 🔽 🚠 🚜 E = = = 🗽 🥌 🖾 🕆 😵 🥪 🛥 🕍 🖤
E- Attitude Controller Derive	ID	Software requirements for a reusable attitude controller
⊞ - 1 Introduction ⊞ - 2 Component Design	43	[Simulink reference: attitude_controller/Rate Limit (Saturate)]
	20	2.4 Integral Control and Limit 🔹
		The integral control shall generate a surface command based on the attitude rate error computed by the rate control, integral error gain and the autompilot engage state. The total integral command shall be limited to not exceed the integral command limit. When the autopilot is not engaged, the integral command and internal state shall be held at zero.
	63	[Simulink reference: attitude_controller_harness/Signal Builder (SubSystem)]
	39	[Simulink reference: attitude_controller/Int Gain (Gain)]
	38	[Simulink reference: attitude_controller/Not engaged (Logic)]
	37	[Simulink reference: attitude_controller/Integrator (DiscreteIntegrator)]
	21	2.5 Surface Command and Limit 4
		in a threads
Username: bpotter	Exclu	sive edit mode



MathWorks Aerospace and Defense Conference '07

The MathWorks

Requirements-based test trace example – view from Simulink Signal Builder block to DOORS

MathWorks Aerospace and Defense Conference '07

The MathWorks

Model coverage report example

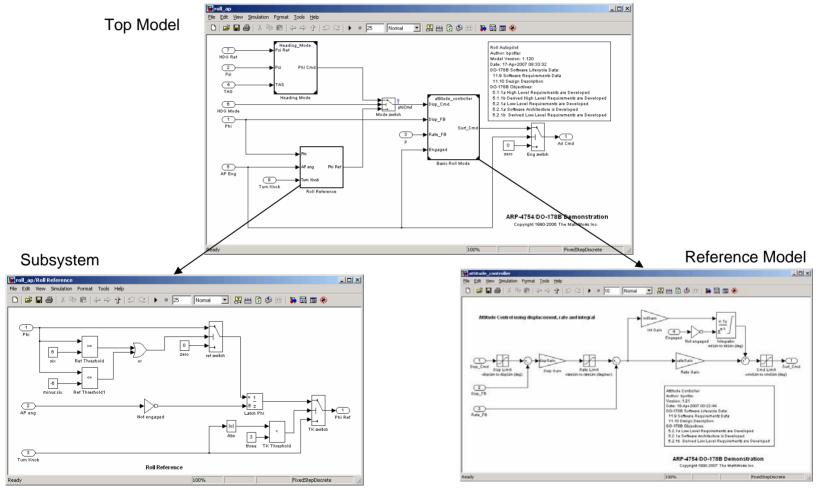
♣ C A A Location:	file:///C	:/local_work_area/o	demos/autopi	lot_R2007a_n	ndlref/attitude	e_control_res	ults19486407	.html				
iscrete integrator block " <u>In</u>	tegrato	r "										
Parent:	/attitude	_controller										
Metric		Coverage										
Cyclomatic Complexity Decision (D1)		3 100% (6/6) dec	cision outco	mes								
Decisions analyzed:												
Reset		100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
false		201/401	201/401	201/401	201/401	201/401	201/401	201/401	201/401	201/401	240/401	2049/40
true		200/401	200/401	200/401	200/401	200/401	200/401	200/401	200/401	200/401	161/401	1961/40
integration result <= lowe	er limit	50%	50%	50%	50%	50%	50%	50%	50%	50%	100%	100%
false		401/401	401/401	401/401	401/401	401/401	401/401	401/401	401/401	401/401	283/342	3892/39
true		0/401	0/401	0/401	0/401	0/401	0/401	0/401	0/401	0/401	59/342	59/395
integration result >= upp	er limit	50%	50%	50%	50%	50%	50%	50%	50%	50%	100%	100%
false		401/401	401/401	401/401	401/401	401/401	401/401	401/401	401/401	401/401	342/401	3951/40
true		0/401	0/401	0/401	0/401	0/401	0/401	0/401	0/401	0/401	59/401	59/401
ogic block " <u>Not engaged</u> "												
Parent:	/attitude	<u>_controller</u>										
Metric		Coverage										
Cyclomatic Complexity		0										
Condition (C1)		100% (2/2) cor	ndition outc	omes								

Requirements Process take-aways

- Early requirements validation
 - Eliminates rework typically seen at integration on projects with poor requirements
- Early test case development
 - Validated requirements are complete and verifiable which results in well defined test cases
- Requirements management and traceability
 - Requirements management interfaces provide traceability for design and test cases

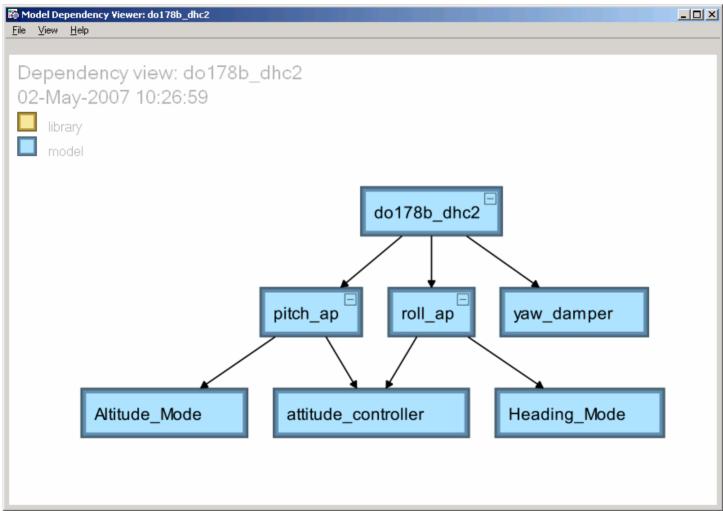
Design Process for Model-Based Design

Model-Based Design


- Create the design Simulink and Stateflow
- Modular design for teams Model Reference
- Model architecture/regression analysis Model Dependency Viewer
- Documented design Simulink Report Generator
- Conformance to standards
 - Design conforms to standards Model Advisor
- Traceability

'he MathWorks

 Design to requirements - Requirements Management Interface



Example detailed design including model reference and subsystems

Model dependency viewer

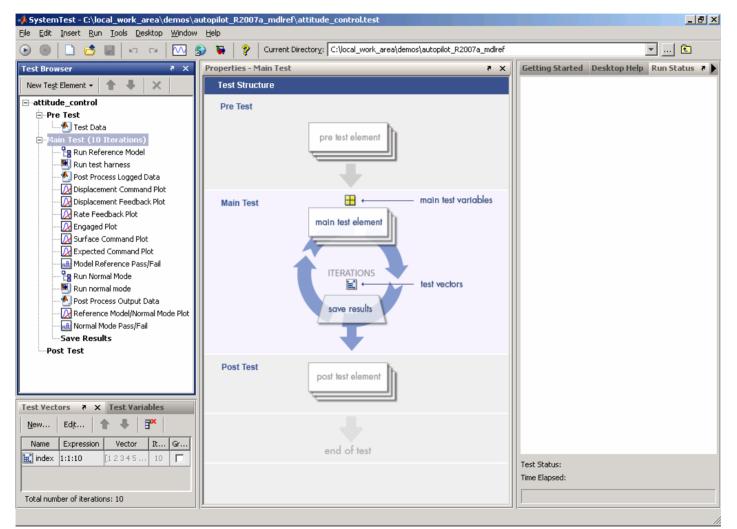
Example Model Advisor report

Done

Check for blocks not supported by Real-Time Workshop:

Ŧ

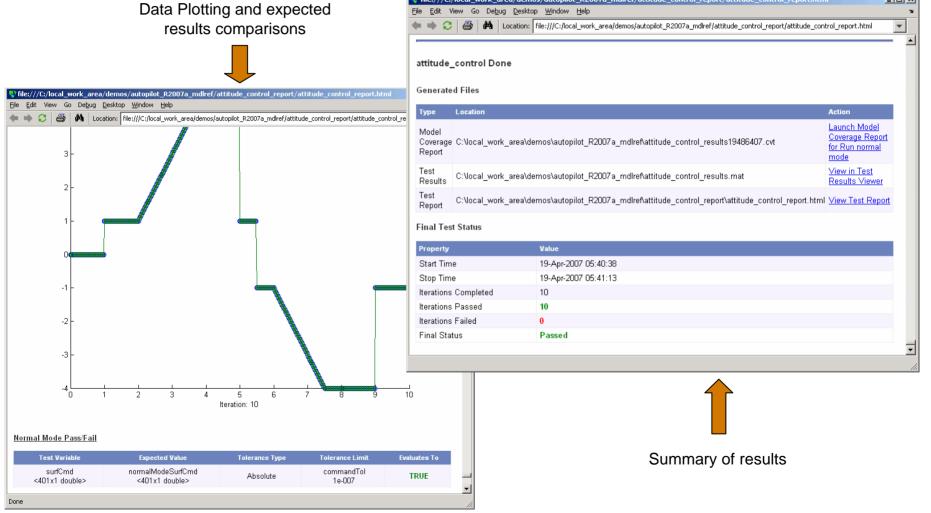
Design Verification for Model-Based Design


- Requirements based test cases
 - Automated testing using SystemTest/Simulink V&V
 - Traceability using Requirements Management Interface
 - Capability to inject faults for FMEA
- Robustness testing and analysis
 - Built in Simulink run-time diagnostics
 - Formal proofs using Simulink Design Verifier
- Coverage Analysis

he MathWorks

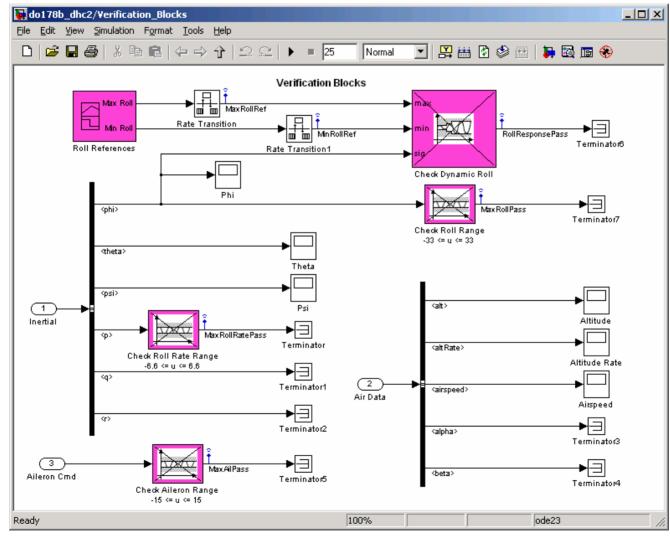
- Verify structural coverage of model
- Verify data coverage of model

SystemTest for requirements based testing


MathWorks Aerospace and Defense Conference '07

The MathWorks

File:///C:/local_work_area/demos/autopilot_R2007a_mdlref/attitude_control_report/attitude_control_report.html


SystemTest – example report

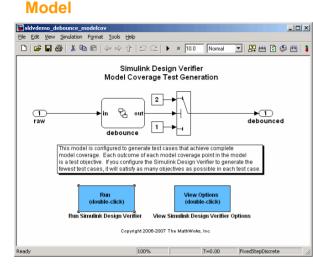
MathWorks Aerospace and Defense Conference '07

- 🗆 ×

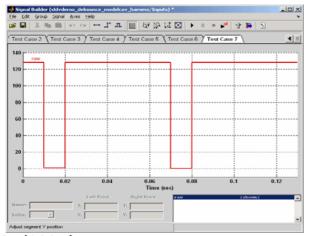
Signal Builder and Assertion Blocks

Aerospace and Defense Conference '07

MathWorks


The MathWorks

Model coverage report example – signal ranges

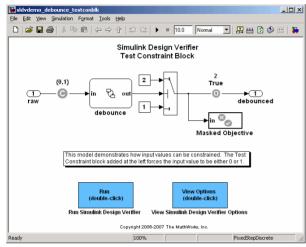

🚯 attitude_contr	oller	Cove	erag	e Re	port																		_	
jie <u>E</u> dit View (50 C	De <u>b</u> ug	ι <u>D</u> ε	esktoj	р <u>W</u>	<u>/</u> indov	v H	<u>i</u> elp																Y
🕨 🔿 🗢 🛤	Å	ģ L	.ocati	ion:	file:/	//⊂:/le	ocal_	work_	area	/dem	os/ai	utopilo	ot_R2	2007a	a_md	lref/a	ttituc	le_co	ntrol	_resu	lts19	486407	.html	-
Signal Rai	nae	es:		,																				
•	Ũ		_		_		_		_		_		_		_		_		_		_			
Hierarchy		st1		st2		st3		st4	Tes			st6		st 7		st8		st9		st 10		erall		
	Min	Max	Min	мах	Min	мах	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	MID	мах	Min	Max	Min	Max		
attitude_controller		~	~			~	~	~		~	~	~	~					~	~	~	~	~		
<u>Integrator</u>	0	0	0	U	0	0	0	0	0	0	U	0	0	0	0	0	0	0	-3	3	-3	3		
<u>Not engaged</u>	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1		
<u>Cmd Limit</u>	-1	1	-9	9	-10	10	-1	1	-4	4	-5	5	-1	1	-7	7	-7.5	7.5	-4	4	-10	10		
<u>Disp Limit</u>	-1	1	-9	9	-10	10	0	0	0	0	0	0	0	0	0	0	0	0	-1	1	-10	10		
<u>Rate Limit</u>	-1	1	-9	9	-10	10	-1	1	-4	4	-5	5	0	0	0	0	0	0	-1	1	-10	10		
<u>Disp Gain</u>	-1	1	-9	9	-10	10	-1	1	-4	4	-6	6	0	0	ο	0	0	0	-1	1	-10	10		
<u>Int Gain</u>	ο	0	0	0	ο	0	0	0	0	0	0	0	0	о	0	ο	ο	ο	-2	2	-2	2		
<u>Rate Gain</u>	-1	1	-9	9	-10	10	-1	1	-4	4	-5	5	-1	1	-7	7	-8	8	-1	1	-10	10		
<u>Sum</u>	-1	1	-9	9	-10	10	-1	1	-1	1	-1	1	0	0	0	0	0	0	-1	1	-10	10		
	-1	4	-9	9	-10	10	-1	1	-4		-5	•	-	1	-1	1	-1	1	-1	1	-10	10		
<u>Sum1</u>	-	1		_			-	1		4		5	-1	1	-		-		-					
<u>Sum2</u>	-1	1	-9	9	-10	10	-1	1	-4	4	-5	5	-1	1	-7	7	-8	8	-4	4	-10	10		
																								ÞĒ
one																								
brie																								

Simulink[®] Design Verifier – Coverage Test

Generated Test Cases

The MathWorks

MathWorks Aerospace and Defense Conference '07


Test Report

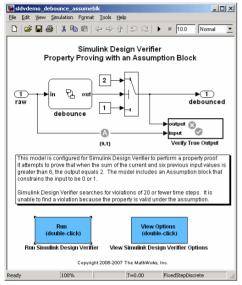
ina	diok-I	locian	Vorifio	r Repo	et -					- []
Ed		ew Go				Window	Help			_
-	C					_		MATLAB/	sldv_outpul	d i
'es	t C	ase	I		_					
		400	•							
Sumi	-									
Lengt		Count:		econd	s (bis:	ample p	eriods)			
)bjec	tives	Reac	hed A	t:						
Step		Time	•	Objee	tives					
1		0		1						
2		0.01		Z						
				<u>5</u>						
3		0.02		11						
				<u>16</u> 18						
				10						
9		0.08		10						
				14						
13		0.12		<u>15</u>						
Sono	rated	Input	Data	1						
						_				
Time	<u> </u>	0.01	0.02	0.07	0.08	_				
Step		2	3	4	5	-				
raw	128	1	128	0	128					
						_				

Simulink Design Verifier – Objective Test

Model with Constraints and Objectives

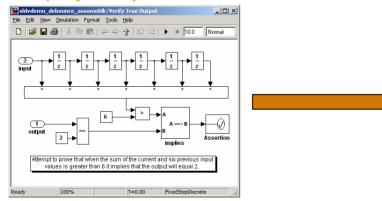
The MathWorks

Generated Test Cases


MathWorks Aerospace and Defense Conference '07

Test Report

🔮 Simulink I	Design V	/erifie	r Report 📃 🔍						
<u>File E</u> dit Vi	ew Go	De <u>b</u> u	ug Desktop Window Help 🏻 🔊						
♦ ♦ ∅	3	#	Location: dvdemo_debounce_testconblk_report.html 🔽 👘						
Chapte	er 3.	Tes	t Cases / Counterexamples						
Table of C	ontent	s							
Test Case	Test Case 1								
Test Case	<u> </u>								
Test C	ase ′	1							
Summary Length: Objective (Objectives	C Count: 2	2	Geconds (4 sample periods) .t:						
Step	Time		Objectives						
7	0.06		2						
13	0.12		1						
15	0.12		1						
Generated	i Input	Data.							
Time 0	0.01	0.07							
Step 1	2	3							
raw O	1	0	1						
	4		-						
•									
Done									


Simulink Design Verifier – Property Proving

Model with Assumption and Objective

The MathWorks

Property to be proven

MathWorks Aerospace and Defense Conference '07

Report

6	Simulink Design Verifier Rej	port _OX
Ē	jile <u>E</u> dit View Go De <u>b</u> ug <u>D</u>	2esktop Window Help 🏻 🛥
4	🕨 🔿 😂 🛛 🎒 Locat	tion: /sldvdemo_debounce_assumeblk_report.html 💌
	Salonopon	
L	ReportFileName	\$ModelName\$_report
	ReportIncludeGraphics	off
	DisplayReport	on

Chapter 2. Test/Proof Objectives

Table of Contents

<u>Status</u> Verify True Output

Status

Table 2.1. Objectives having No Counterexamples of 20 or Fewer Steps

#:	Туре	Model Item	Description
1	Assert	<u>Assertion</u>	Assertion "Assertion" assert

With the following active constraints:

Name	Constraint
Assumption	{01}

Verify True Output

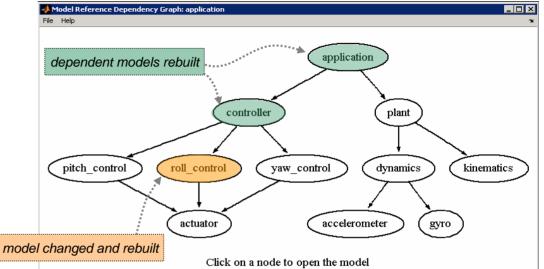
Objectives of: Assertion

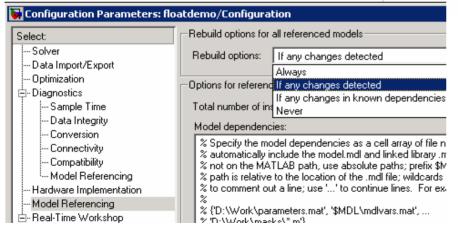
#:	Status	Test Cases	Description	
1	Undecidable	n/a	assert	
(ì

Design Process take-aways

- Modular reusable implementations
 - Platform independent design and code
 - Scalable to large teams
- Consistent and compliant implementations
 - Common design language
 - Automated verification of standards compliance
- Efficient verification process
 - Develop verification procedures in parallel with design
 - Automated analysis techniques
 - Coverage analysis early in the process

Coding Process for Model-Based Design

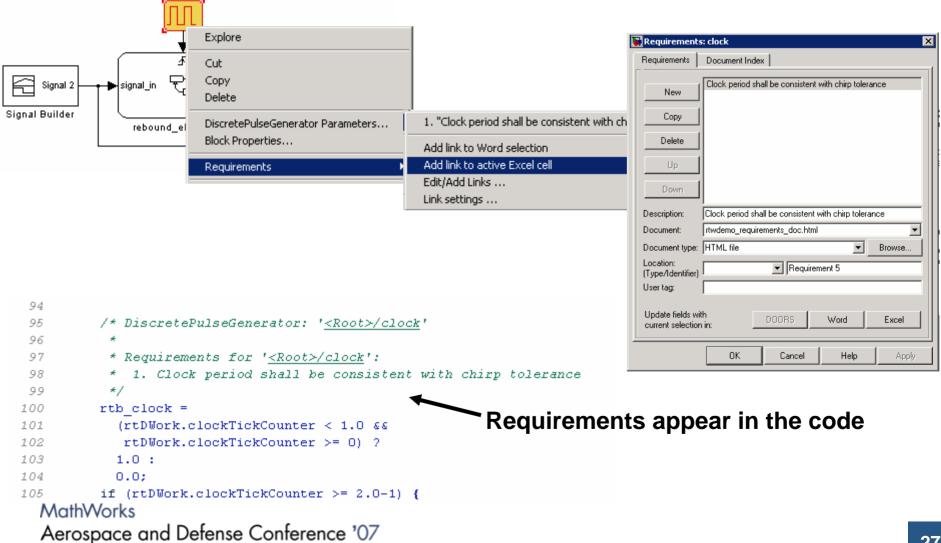

- Incremental code generation
 - Model Reference
- Traceability
 - HTML Code Report
- Source code verification
 - Complies with standards using PolySpace MISRA-C Checker
 - Accurate, consistent and robust using PolySpace Verifier


Incrementally Generate Code

 Incremental code generation is supported via Model Reference

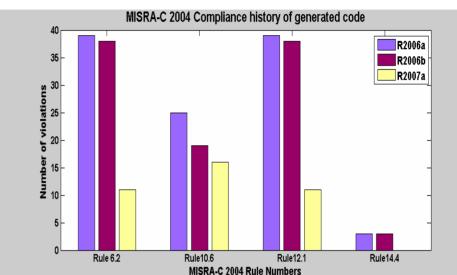
The MathWorks

 When a model is changed, only models depending on it are subject to regeneration of their code



- Reduces application build times and ensure stability of a project's code
- Degree of dependency checking is configurable

Add Links to Requirements



Compliance history of generated code

• Our MISRA-C test suite consists of several example models

The MathWorks

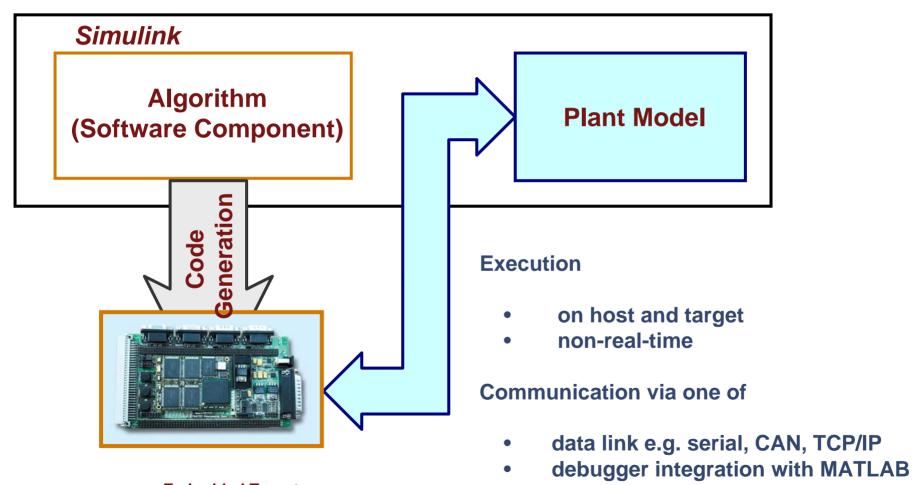
• Results shown for most frequently violated rules

- Improving MISRA-C compliance with each release, e.g.
 - Eliminate Stateflow *goto* statements (R2007a)
 - Compliant parentheses option available (R2006b)
 - Generate *default* case for *switch-case* statements (R2006b)
- MathWorks MISRA-C Compliance Package available upon

request http://www.mathworks.com/support/solutions/data/1-1IFP0W.html MathWorks Aerospace and Defense Conference '07

Coding Process take-aways

- Reusable and efficient source code
- Traceability
- MISRA-C compliance
- Static verification and analysis


Integration Process for Model-Based Design

- Executable object code generation
 - ANSI/ISO C or C++ compatible compiler
 - Makefile generation capability
 - Run-time libraries provided
- Executable object code verification
 - Capability to build interface for Processor-In-the-Loop (PIL) testing
 - Analyze code coverage during PIL
 - Analyze execution time during PIL

Processor-in-the-Loop (PIL) Verification

- Execute Generated Code on Target Hardware

MathWorks Embedded Target Aerospace and Defense Conference '07

Integration Process take-aways

- Integration with multiple development environments
- Efficient processor in-the-loop test capability

Wrap-up

- Tools to support the entire safety critical development process
 - Requirements
 - Design
 - Code
 - Executable
 - Verification
- MathWorks is participating on SC-205/WG-71 committee which is working on Revision C of DO-178
- See the various demos in the exhibit area