

Distributed Computing in the Engineering Workflow

Loren Dean Director of Engineering, MATLAB Products The MathWorks

Agenda

An important trend impacting the Engineering workflow

- Task parallel applications
- Data parallel applications

Market trend: from single processor to grids

Why is this important?

Technical computing

- Modeling and analysis involves numerous runs
 - Monte carlo or similar applications very common
 - Complexity of algorithms causes longer execution times
- Data sets are increasing in size
- Model-based design
 - Simulation is done prior to real-world implementation
 - Many scenarios tested
 - Optimal solutions can be found earlier
 - Simulations are growing in complexity and size
 - Simulation time increases
 - Rsim and other targets are only part of the solution

MATLAB addresses the market trend

MATLAB addresses the market trend

MATLAB to Distributed Computing

What is happening because of this trend?

Low-cost hardware

4xShuttle \$4,000

Skills required for distributed computing today

Skills that would be preferred

Distributed computing solution

Agenda

An important trend impacting the Engineering workflow

Task parallel applications

Data parallel applications

Multiple independent problems

Task parallel applications

Example: Land Classification

- National Land Cover Dataset (NLCD) from U.S. Geological Survey – 30GB
- "Where are wetlands, forests etc concentrated?"
- "How does the distribution compare with other datasets?"

From sequential to distributed: MATLAB

From sequential to distributed: MATLAB

```
function results = main(var1, var2)
 1
 2
 3
     jm = findResource('scheduler', 'type', 'jobmanager');
 4
 5
     job = createJob(jm, ...
 6
         'FileDependencies', 'myFunction.m', ...
 7
         'PathDependencies', {'\\myPath\myFolder\data'});
 8
 9
    nSims = 1000;
10
     out = cell(1, nSims);
11
12
     for ii = 1:nSims
13
         createTask(job, @myFunction, 1, {ii, var1, var2});
14
     end
15
16
17
18
19
20
21
     results = postprocessing(out);
22
```


From sequential to distributed: Simulink

 Divide the Monte Carlo simulations such that each processor executes a full Simulink simulation or RSIM target.

Eg., one simulation per altitude

2. Create a Task Function that uses MATLAB commands to call the Simulink model you want to execute

MathWorks

Aerospace and Defense Conference '07

Agenda

- A little history and context setting
- Task parallel solutions

Data parallel applications

(interactive and batch)

Large Memory Requirements

intages = (ml.nl), b(m.n)

Transposing a Distributed Matrix

Example:

Image Formation Algorithms: Synthetic Aperture Radar (SAR)

Description

- SAR is a sophisticated method of post-processing radar data
- Size and processing requirements demand lots of memory
- Approach
 - Processing SAR images involves interdependent 2-D operations
 - Distribute image across the cluster

From sequential to distributed: MATLAB

The MathWorks

```
function ImageOut = cztproc single
                 1
                 2
                 3
                     %Read in SAR image data
                 4
                     load sarimage.mat;
                 5
                      [I,N] = size(fftImage);
                 6
                      im dist = distribute(fftImage,1);
                 7
                 8
                 9
                     tic:
                10
                     11
                     % azimuth processing
                12
                     13 -
                     nfft = power(2,nextpow2(2*N-1));
                14 -
                     w = \exp(-j*2*pi/N);
                15 -
                     kk = ((-N+1):N-1).';
                16 -
                     kk2 = (kk .^{2}) ./ 2;
                     ww = w .^ (kk2); % <---- Chirp filter is 1./ww
                17 -
                18 -
                     nn = (0:(N-1))';
                19 -
                     aa = ww(N+nn);
                20
                21 -
                     for i = 1:I,
                22
                        % Perform azimuth CZT
                23 -
                        x = im dist(i,:);
                24 -
                        25
                26 -
                        fy = fft(y, nfft);
                27 -
                        fv = fft( 1 ./ ww(1:(2*N-1)), nfft ); % <---- Chirp filter.</pre>
                         fy = fy .* fv;
                28 -
                29 -
                         q = ifft(fy);
                30
                31 -
                         g = [g( N:(2*N-1), :) .* ww( N:(2*N-1) )].'; %#ok<NBRAK>
                32
                33 -
                         im dist(i,:) = g;
                34 -
                     end
MathWorks
                35
Aerospace and Defense Conference '07
```

From sequential to distributed: MATLAB

The MathWorks

```
function ImageOut = cztproc single
                  1
                  2
                  3
                      %Read in SAR image data
                  4
                      load sarimage.mat;
                  5
                      [I,N] = size(fftImage);
                  6
                       im_dist = distribute(fftImage,1);
                  7
                  8
                  9
                      tic:
                 10
                      11
                      % azimuth processing
                 12
                      13 -
                      nfft = power(2,nextpow2(2*N-1));
                 14 -
                      w = \exp(-j*2*pi/N);
                 15 -
                      kk = ((-N+1):N-1).';
                 16 -
                      kk2 = (kk .^{2}) ./ 2;
                 17 -
                      ww = w .^ (kk2); % <---- Chirp filter is 1./ww
                 18 -
                      nn = (0:(N-1))';
                 19 -
                      aa = ww(N+nn);
                 20
                 21
                       parfor i = 1:I,
                 22
                 23 -
                          x = im dist(i,:);
                          \nabla = (x.') .* aa;
                 24
                 25
                 26 -
                          fy = fft(y, nfft);
                 27 -
                          fv = fft( 1 ./ ww(1:(2*N-1)), nfft ); % <----- Chirp filter.</pre>
                 28 -
                          fy = fy . * fy;
                 29 -
                          g = ifft( fy );
                 30
                          g = [g( N:(2*N-1), : ) .* ww( N:(2*N-1) )].'; %#ok<NBRAK>
                 31 -
                 32
                 33 -
                          im dist(i,:) = g;
                 34 -
                      end
MathWorks
                 35
Aerospace and Defense Conference '07
```


MathWorks Aerospace and Defense Conference '07

The MathWorks

Why is this important?

Technical computing

- Modeling and analysis involves numerous runs
 - Monte carlo or similar applications very common
 - Complexity of algorithms causes longer execution times
- Data sets are increasing in size
- Model-based design
 - Simulation is done prior to real-world implementation
 - Many scenarios tested
 - Optimal solutions can be found earlier
 - Simulations are growing in complexity and size
 - Simulation time increases
 - Rsim and other targets are only part of the solution

- Hardware trends are impacting everybody
- Understanding and creating distributed applications will be an important skill for anybody in the fields of Computer Science or Technical Computing
- MathWorks provides a market-leading solution for distributed applications
- Demo available in exhibit hall