

Topics to be Covered

- Motivation for real-time with power electronics
- Capturing power electronics switching events utilizing FPGAs
- How to create a power electronics real-time simulation
 - Demo Solar inverter
 - Automatically converting models for deployment to FPGAs (New feature 2018b)
 - How to convert circuit model to FPGA code (HDL)
 - Perform all tasks from a single environment: Simulink
 - Biggest selling point of this workflow

What is Our Goal?

Primary goal is to design power electronics hardware and controllers

MATLAB EXPO 2019

Hardware (Plant)

What is Our Goal?

- Primary goal is to design power electronics hardware and controllers
 - Hardware in the loop (HIL) testing can improve this process

What is Hardware in the Loop (HIL) Testing

HIL replaces the power electronics hardware with a virtual simulation

What is Hardware in the Loop (HIL) Testing

- HIL replaces the power electronics hardware with a virtual simulation
 - Controller can operate as if in the real system

Advantages of Hardware in the Loop (HIL) Testing

- Can replace prototypes or production hardware with a real-time system
- Easier to automate testing and test fault conditions
- Safer than most power electronics hardware

Start many design/test tasks earlier

Why are FPGAs Important for Real-time

- Certain issues make running a model real-time challenging
 - Minimum time step
 - Model complexity
 - Specialized solvers

Why is are FPGAs Important for Real-time

- It is all about time step
 - Thermal seconds
 - Mechanical milliseconds
 - Power Systems sub-milliseconds
 - Power Electronics microseconds
 - Radar nanoseconds
- Typical real-time CPU based solutions run in the sub-millisecond range
- FPGA based solutions run in the microsecond range
 - bordering sub-microsecond for specific applications

The Need for Small Time Step Simulations

High sample rates (small time steps) are required to capture fast transients in systems like power electronics

Resolution: microseconds

Path to FPGA Accelerated Real-time: Simscape

- 1. Create a model of the system
 - Often called 'Desktop Simulation'
 - Can combine Simscape with Simulink
- Convert model to HDL
 - Allows model to run on an FPGA
 - Utilize Simscape to HDL Advisor
- 3. Program real-time machine with custom bitstream
 - Bitstream is the program on the FPGA
 - Combine with standard Simulink model on a CPU

MathWorks Supports Many Power Electronics Applications

Solar Inverter for Real-time Testing

Solar Inverter for Real-time Testing

Solar Inverter for Real-time Testing

Step 1: Create a Model (Desktop Simulation)

Inverter and Boost Converter Model

Inverter and Boost Converter Model

Need to convert continuous models to discrete models appropriate for an FPGA

Convert to HDL: Simscape HDL Workflow Advisor New Feature 2018b

Run 'sschdladvisor' on model

Extract State Space Parameters (Linearize the System)

Simulation must contain all relevant switching states

Simscape HDL Workflow Advisor

Choose smallest number of solver iterations possible (usually 3-5)

Implementation Model

Replaces Simscape with State-space

Compare Generated Model to Original

Create Custom Bitstream for Real-time FPGA

Bitstream Model

MATLAB EXPO 2019

24

Create Custom Bitstream for Real-time FPGA

Create Custom Bitstream for Real-time FPGA

Bitstream

Generated by HDL Workflow Advisor on 04-Jan-2019 15:56:21

Combine with Simulink Model

Dashboard Real-time Interface

Bitstream

DAC_Snv

PCIe_sim_PV_voltage_Si Speedgoat IO333-325k FPGA IO board TTL_DAC_trioos

CPU Based Model

MATLAB EXPO 2019

27

Demo Recording

Scope Screenshot

FPGA captures the switching transients

MATLAB EXPO 2019

(LC Filter)

(DC Cap)

Demo Configuration Details

- Controller C2000
- Real-time System Speedgoat Baseline-M
 - IO333 06-21 Kintext 7, 325k FPGA card expansion

2018b Capabilities - Kintex 7 325K

- Works specifically for switched linear systems (piecewise linear)
 - Supports multiple domains
 - Can connect to Simulink motor models
- Ideal for 2-6 switching components per converter
 - Can link multiple converters for larger systems
- Typical systems run at 2 to 5 us
 - Simple systems can be faster than 1 us

Conclusions

- Real-time greatly improves embedded control design
- FPGAs are important for real-time simulation of power electronics
- Embedded control design and real-time testing can all be done in the same environment...

Simulink!