MATLAB EXPO 2016

Develop Predictive Maintenance Algorithms using MATLAB

Dr. Sarah Drewes, MathWorks Consulting Services

Different Types of Learning

Classification in Predictive Maintenance

- Parameters/Predictors: Sensor data, control settings
- Classes/States: Failure states, time horizon until failure/ material fatigue

Goal: Predict failure from sensor data

Prerequisites:

- Machine-readable data format
- Sufficient historical data containing meaningful information

Classification model generation @MONDI Gronau

Which sensor measurements indicate machine failure?

Basic Workflow

Classification model generation-Prepare data

- Preprocess sensor data: clean invalid data, disregard constant values, identify data types
- Aggregate per time stamp

Basic Workflow

Classification model generation Choose algorithms

Possible Classification Methods

Statistics and Machine Learning

Neural Network

Classification model generation Choose an algorithm

- Distinguish 'categorical' (= discrete) and other (= continuous) predictors
- A priori analysis of data, e.g., test for normal distribution
- Reduce dimension of predictor variables, e.g., principal component analysis (PCA)
- Use ensemble learning to reduce sensitivity of learning algorithms, e.g.
 TreeBagger for classification trees

Classification model generation Choose an algorithm

	Algorithm	Function	Categorical Predictors?	Data	Functions to Examine Data	Notes
\longrightarrow	Nearest Neighbor	fitcknn	Y (but not both)	Normalize (distance-based calculation).	pdist pdist2	Better results in lower dimensions. High memory usage.
+	Naive Bayes	fitcnb	Y	Assumes normal distributions (can specify kernel for nonnormal).	probplot jbtest ksdensity	Popular for high dimensional problems. Computationally efficient. Widely used for text classification.
	Discriminant Analysis	fitcdiscr	N Y	Multivariate normal distribution by class.	cov vartestn anoval kruskalwallis	Determines mean and covariance for each class. Can specify linear or quadratic discriminant type.
	Trees	fitctree fitrtree	Y	Any arrangement. Binary comparisons and structure of tree can be examined/adjusted.	view	Computationally efficient. Highly sensitive to training data.
	SVM	fitcsvm fitcecoc	и Y	Linearly separable hyperplane (can specify nonlinear kernel).	ksdensity	Can specify nonlinear kernel distributions. Can adjust optimization parameters.
>	Neural Network	patternnet	N Y	Transpose (columns are observations). All data must be numeric.	dummyvar plotconfusion plotroc	Use dummyvar for categorical classes. Models are available as Simulink® blocks.

Basic Workflow

Classification model generation Fit model

Fit model

Basic Workflow

Classification model generation Evaluate model

Misclassification rate 1 of 7: 14.28 % Accuracy: 85.72 %

Classification model generation Evaluate model - using Classification Learner App

Basic Workflow

For each classification method

Classification model generation Choose model

Choose Model with best misclassification rate

	NearestNeighbour	TreeBagger	NeuralNetwork	NaiveBayes
	Misclassification % (Mean)	Misclassification % (Mean)	Misclassification % (Mean)	Misclassification % (Mean)
M151	24%	2%	8%	10%
M152	44%	5%	23%	13%
M153	23%	2%	13%	13%
M156	12%	2%	3%	9%
M157	11%	1%	10%	8%
M158	29%	2%	14%	17%
M159	21%	0%	3%	2%
M181	1%	0%/	1%	2%

Classification model generation Choose model

Basic Workflow

Predictive monitoring at MONDI Gronau - Use the predictive model

Predict current machine states during operation.

21

Process monitoring at MONDI Gronau – Domain knowledge and tools

Tools:

- MATLAB
- Database Toolbox
- Statistics and Machine Learning Toolbox
- Neural Network Toolbox
- MATLAB Compiler