MATLAB EXPO 2016 Develop Predictive Maintenance Algorithms using MATLAB Dr. Sarah Drewes, MathWorks Consulting Services ### **Different Types of Learning** ### Classification in Predictive Maintenance - Parameters/Predictors: Sensor data, control settings - Classes/States: Failure states, time horizon until failure/ material fatigue Goal: Predict failure from sensor data ### **Prerequisites:** - Machine-readable data format - Sufficient historical data containing meaningful information # Classification model generation @MONDI Gronau Which sensor measurements indicate machine failure? ### **Basic Workflow** # Classification model generation-Prepare data - Preprocess sensor data: clean invalid data, disregard constant values, identify data types - Aggregate per time stamp ### **Basic Workflow** # Classification model generation Choose algorithms #### Possible Classification Methods #### Statistics and Machine Learning #### **Neural Network** # Classification model generation Choose an algorithm - Distinguish 'categorical' (= discrete) and other (= continuous) predictors - A priori analysis of data, e.g., test for normal distribution - Reduce dimension of predictor variables, e.g., principal component analysis (PCA) - Use ensemble learning to reduce sensitivity of learning algorithms, e.g. TreeBagger for classification trees # Classification model generation Choose an algorithm | | Algorithm | Function | Categorical
Predictors? | Data | Functions to
Examine Data | Notes | |-------------------|--------------------------|----------------------|----------------------------|---|--|---| | \longrightarrow | Nearest
Neighbor | fitcknn | Y (but not both) | Normalize (distance-based calculation). | pdist
pdist2 | Better results in lower dimensions.
High memory usage. | | + | Naive Bayes | fitcnb | Y | Assumes normal distributions (can specify kernel for nonnormal). | probplot
jbtest
ksdensity | Popular for high dimensional problems. Computationally efficient. Widely used for text classification. | | | Discriminant
Analysis | fitcdiscr | N Y | Multivariate normal distribution by class. | cov
vartestn
anoval
kruskalwallis | Determines mean and covariance
for each class. Can specify linear or
quadratic discriminant type. | | | Trees | fitctree
fitrtree | Y | Any arrangement. Binary comparisons and structure of tree can be examined/adjusted. | view | Computationally efficient. Highly sensitive to training data. | | | SVM | fitcsvm
fitcecoc | и Y | Linearly separable hyperplane (can specify nonlinear kernel). | ksdensity | Can specify nonlinear kernel distributions. Can adjust optimization parameters. | | > | Neural
Network | patternnet | N Y | Transpose (columns are observations). All data must be numeric. | dummyvar
plotconfusion
plotroc | Use dummyvar for categorical classes. Models are available as Simulink® blocks. | ### **Basic Workflow** # Classification model generation Fit model Fit model ### **Basic Workflow** ### Classification model generation Evaluate model Misclassification rate 1 of 7: 14.28 % Accuracy: 85.72 % # Classification model generation Evaluate model - using Classification Learner App ### **Basic Workflow** For each classification method # Classification model generation Choose model ### Choose Model with best misclassification rate | | NearestNeighbour | TreeBagger | NeuralNetwork | NaiveBayes | |------|----------------------------|----------------------------|----------------------------|----------------------------| | | | | | | | | Misclassification % (Mean) | Misclassification % (Mean) | Misclassification % (Mean) | Misclassification % (Mean) | | M151 | 24% | 2% | 8% | 10% | | M152 | 44% | 5% | 23% | 13% | | M153 | 23% | 2% | 13% | 13% | | M156 | 12% | 2% | 3% | 9% | | M157 | 11% | 1% | 10% | 8% | | M158 | 29% | 2% | 14% | 17% | | M159 | 21% | 0% | 3% | 2% | | M181 | 1% | 0%/ | 1% | 2% | | | | | | | # Classification model generation Choose model ### **Basic Workflow** # Predictive monitoring at MONDI Gronau - Use the predictive model Predict current machine states during operation. 21 # Process monitoring at MONDI Gronau – Domain knowledge and tools #### **Tools:** - MATLAB - Database Toolbox - Statistics and Machine Learning Toolbox - Neural Network Toolbox - MATLAB Compiler