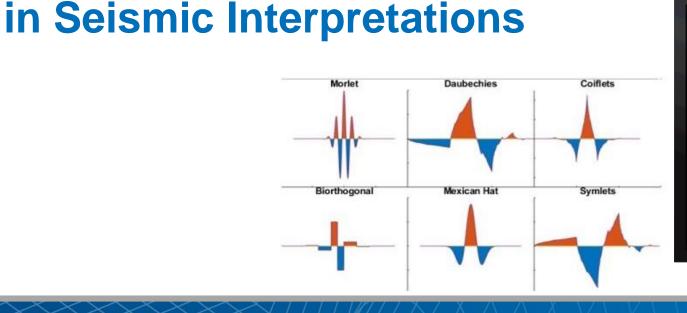


Wavelets – A Hidden Gem For Artificial Intelligence



Akhilesh Mishra, Sr. Application Engineer Plano TX, USA amishra@mathworks.com

Key Takeaways

- Artificial Intelligence techniques when used in combination with Advanced Signal Processing algorithms can yield meaningful insights
- MATLAB can help you combine the best of AI and Signal Processing without requiring you to be an expert in either

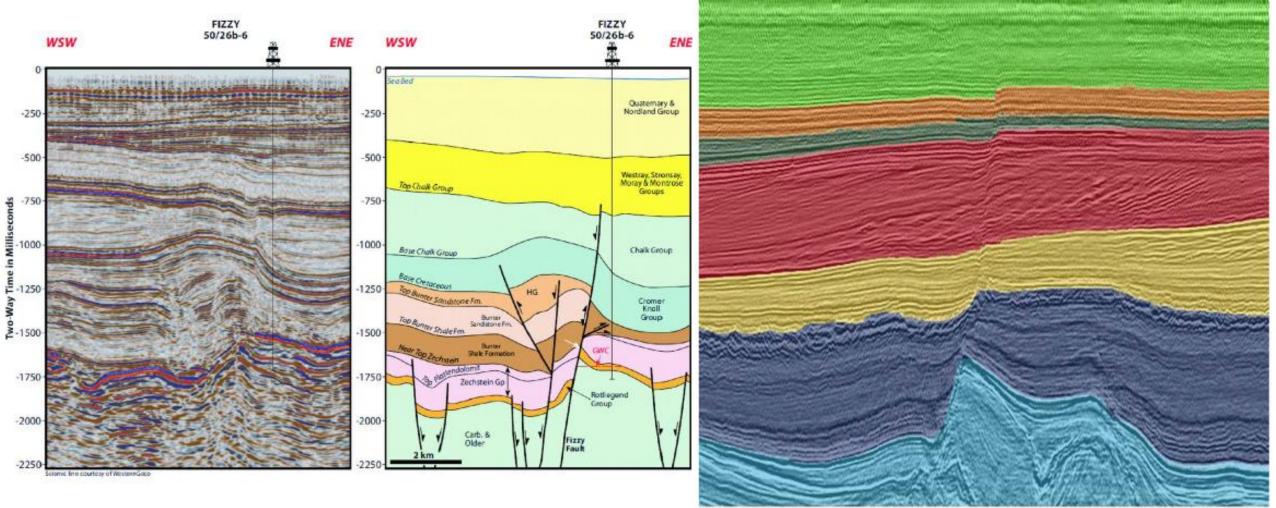
Agenda

- Case study 1: Automated semantic segmentation of seismic images
 - Introduction to case study data
 - Challenges in developing AI models
 - How wavelet analysis helps
- Case study 2: Automated P- and S- waves arrival times detection in earthquake seismograms
 - Introduction to case study data
 - Challenges in developing AI models
 - How wavelet analysis helps
- Conclusion

Case Study I : Automated semantic segmentation of seismic images

Seismic semantic segmentation

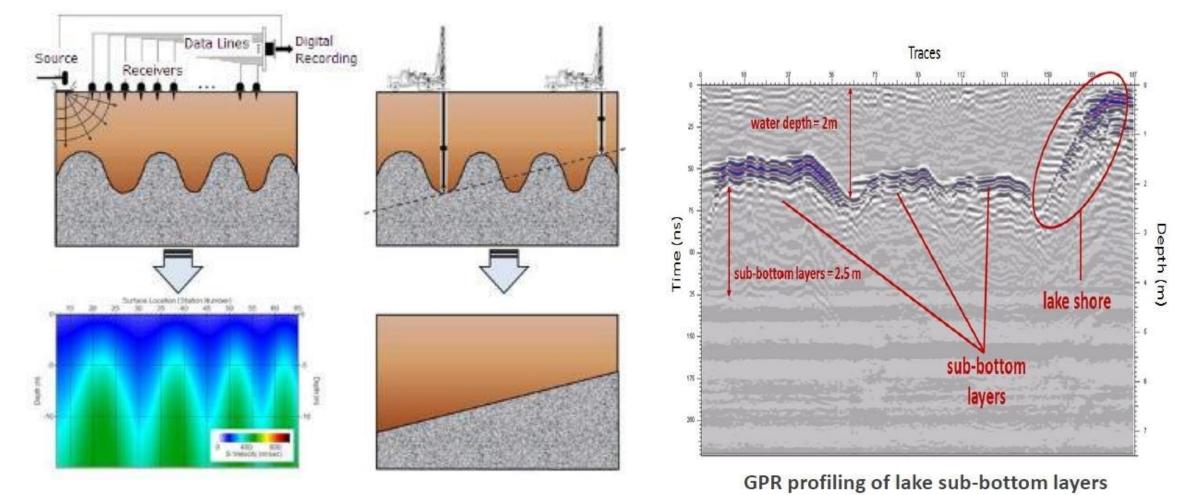
Automation of seismic facies labeling



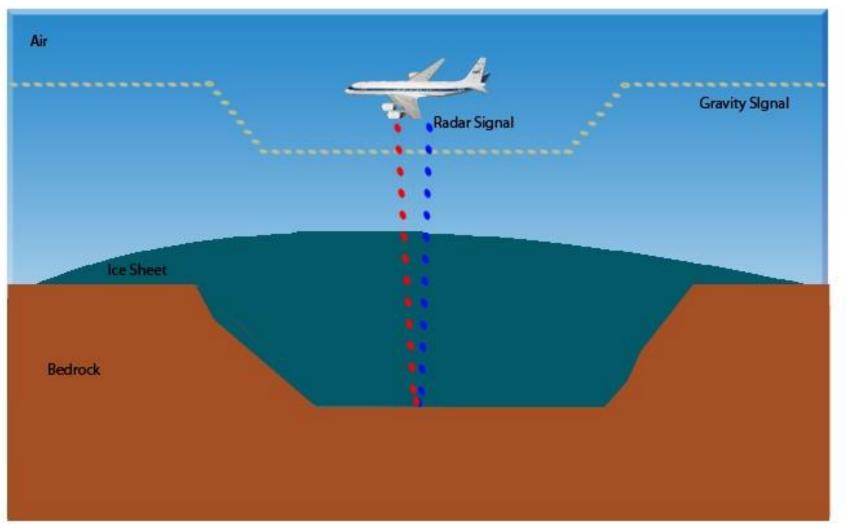
Seismic survey process

SEISMIC SURVEY

DRILLING



Case study data Survey of polar icesheets



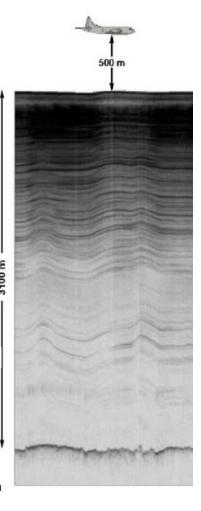
Case study data

MCoRDS/I – Multichannel Coherent Radar Depth Sounder/Imager*

System	parameters
--------	------------

2012
180-210 M
1,3,10 μs
111.11MHz
8
16
~1200W
12 bits
-161 dBm
5 dB
NASA P3

	2009
ЛНz	140-160 MHz
	1,3,10 μs
Z	120 MHz
	6
	6
	~800W
	12 bits
	-161 dBm
	5 dB
	Twin Otter

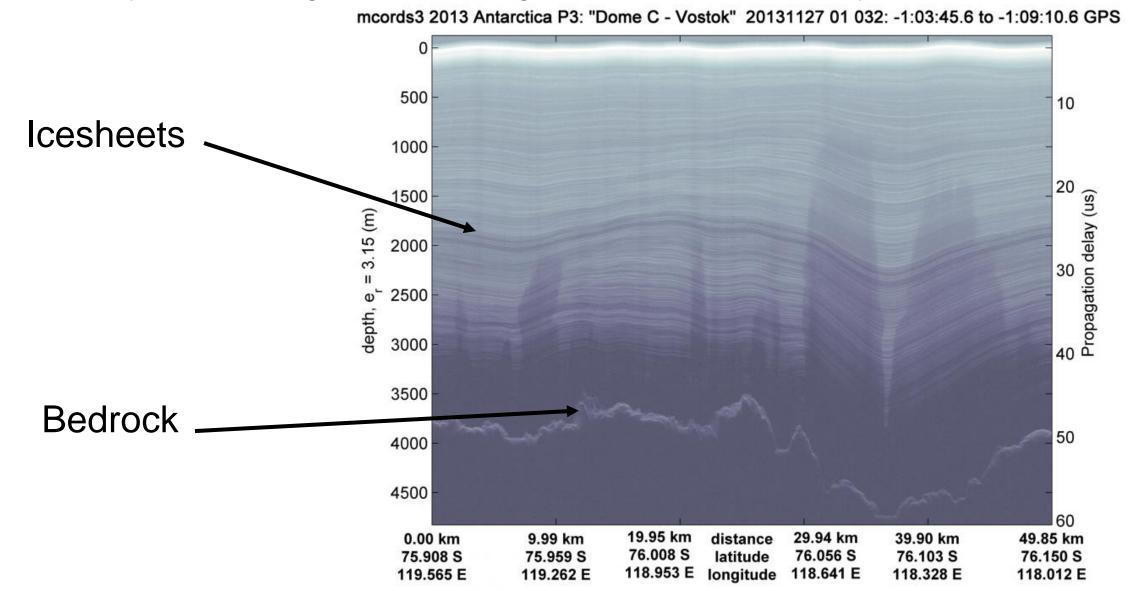


*CReSIS. 2018. MCoRDS Data, Lawrence, Kansas, USA. Digital Media. http://data.cresis.ku.edu/

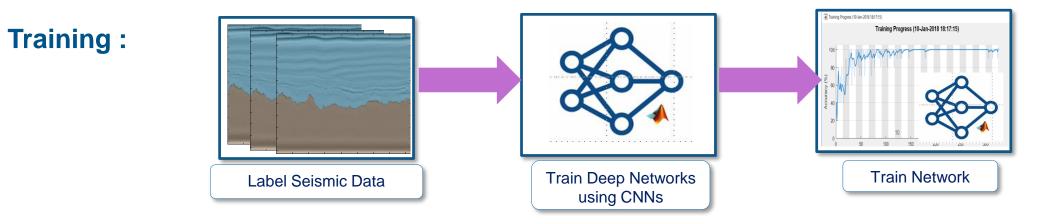
*Gogineni, S., J.-B. Yan, et al., "Bed topography of fast-flowing glaciers and fine-resolution mapping of internal layers", 26th IUGG General Assembly 2015, Prague, 06/22-07/2, 2015.

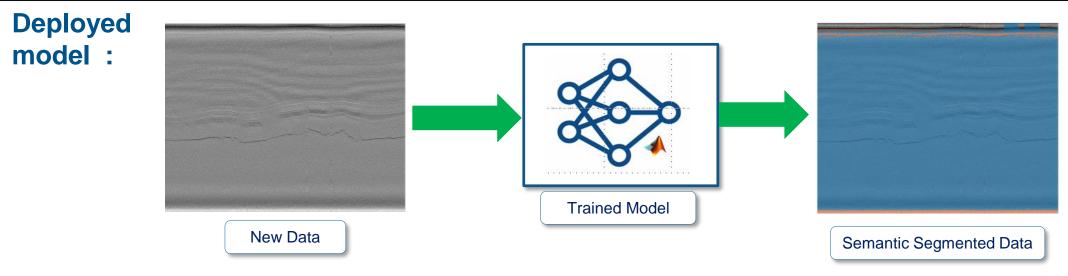
Case study data

Develop automated algorithm for labeling the icesheets and bedrock pixels



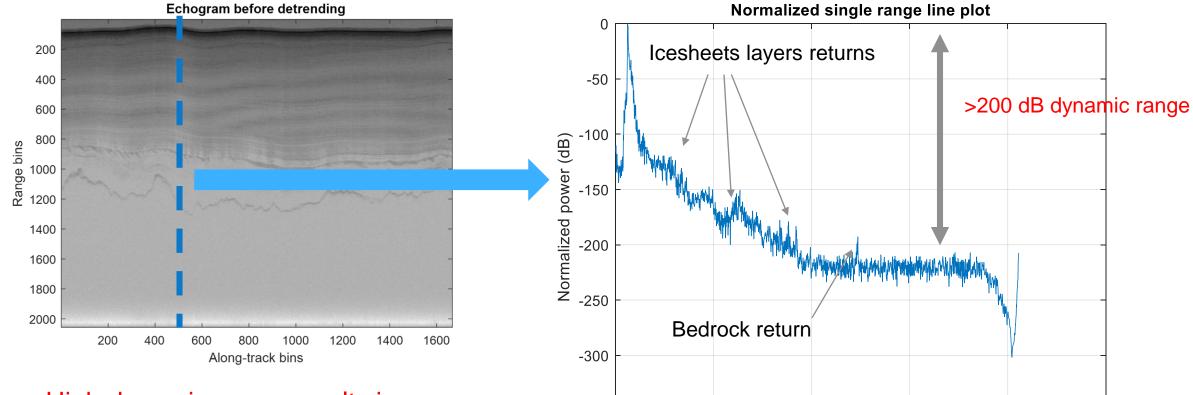
Developing Artificial Intelligence algorithm for automated labeling Traditional approach – Did not work 🛞





Global accuracy of trained model <10%

Why did our model fail? Let's understand the training data



-350

0

500

1000

Range bins

1500

2000

2500

High dynamic range results in :

- Poor contrast in seismic image
- Bedrock signal power very low
- AI model cannot distinguish icesheet layers and bedrock

How to detrend this data?

Some techniques available in literature :

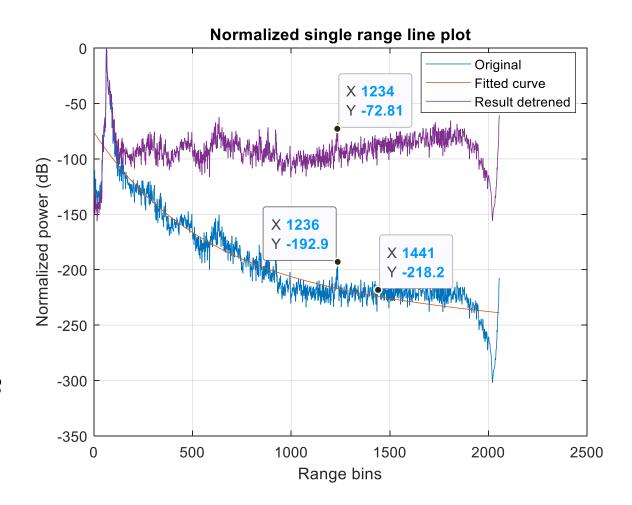
- 1. Curve fitting
 - Fit low order polynomial
 - Fit an exponential function
- 2. Predictive deconvolution
 - Inverse filtering

Result :

Loss in SNR of the bedrock return

Original signal bed SNR = ~27 dBDetrended signal bed SNR = ~20 dB

General model Exp2: val(x) = a*exp(b*x) + c*exp(d*x)Coefficients (with 95% confidence bounds): Example : (-352.2, -319.9)-336 a = Exponential curve fit $\bar{b} =$ 3.661e-05 (1.381e-05, 5.942e-05) (125.1, 154.4)139.8 С = (-0.002127, -0.001568)d = -0.001847

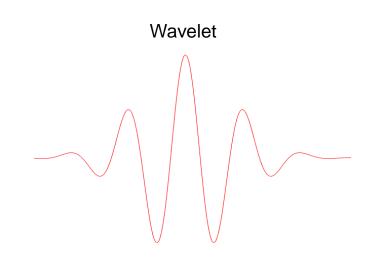


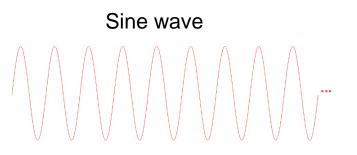
📣 MathWorks[®]

Which technique to use ?

Ans: Use wavelets analysis

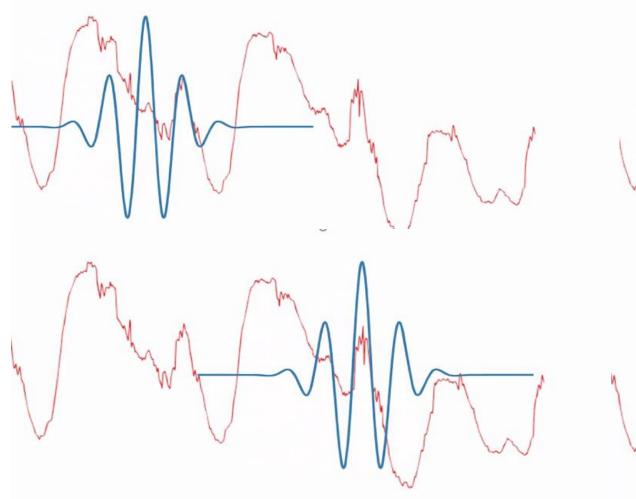
- A wavelet is a rapidly decaying wave like oscillation with zero mean
- Wavelets are best suited to localize frequency content in real world signals
- Availability of a wide variety of wavelets is a key strength of wavelet analysis

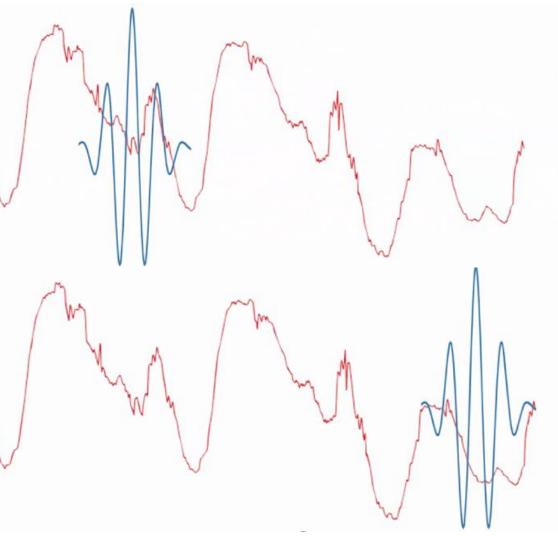




More on wavelets:

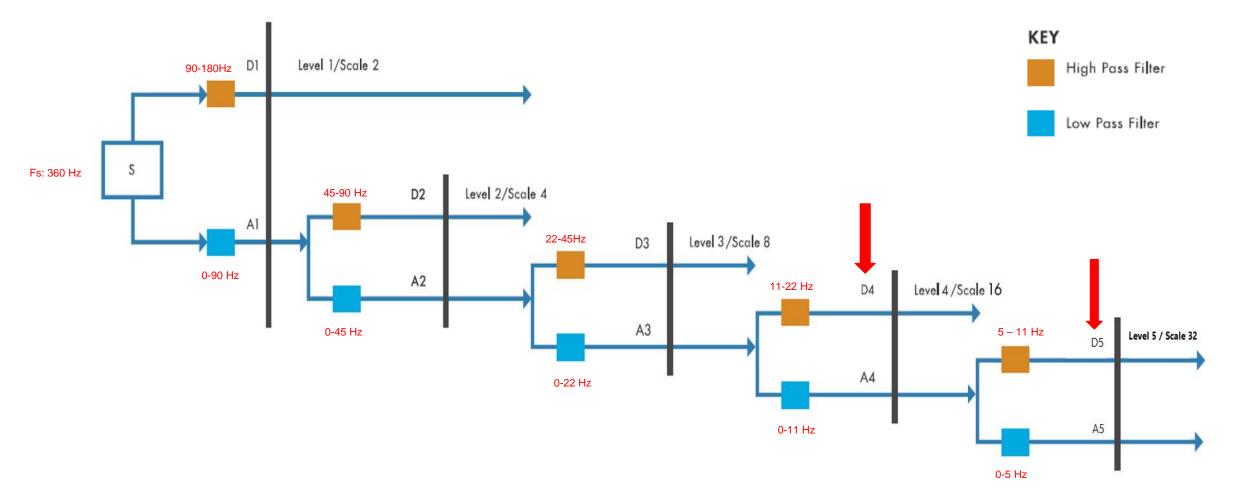
Translation and Scaling :





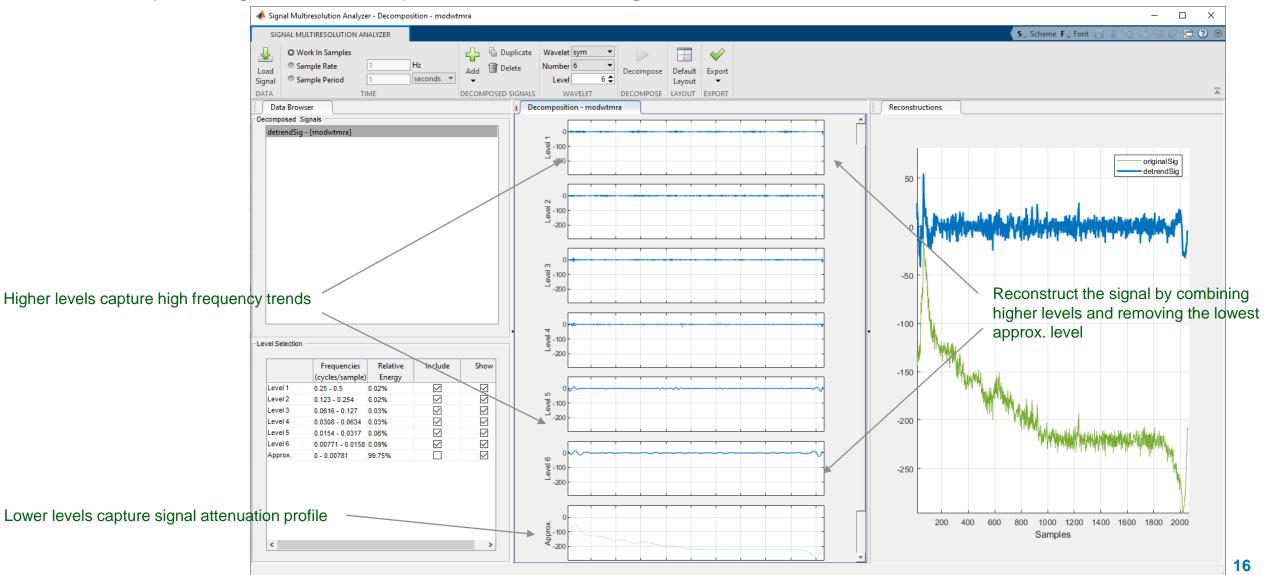
Introduction to Wavelet Multiresolution Analysis

Using DWT (Discrete Wavelet Transform) analyze signals into progressively finer octave bands



Signal Preprocessing using Wavelet Multiresolution Analysis

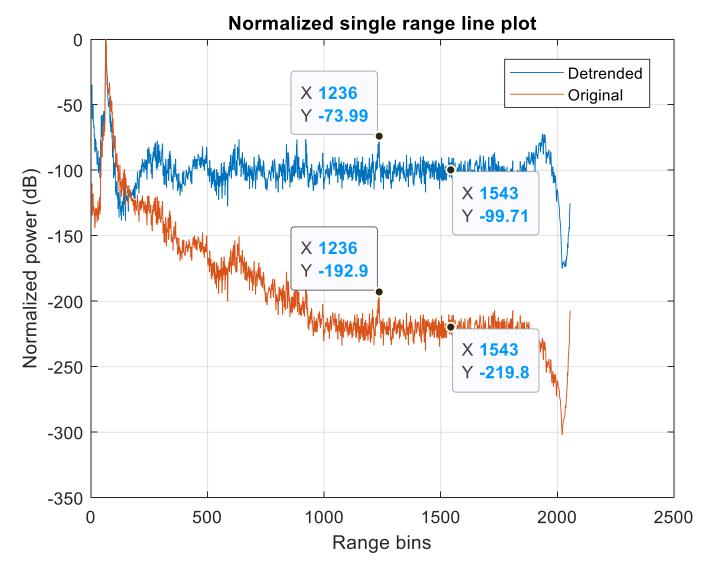
Decompose signal into multiple resolutions using wavelets



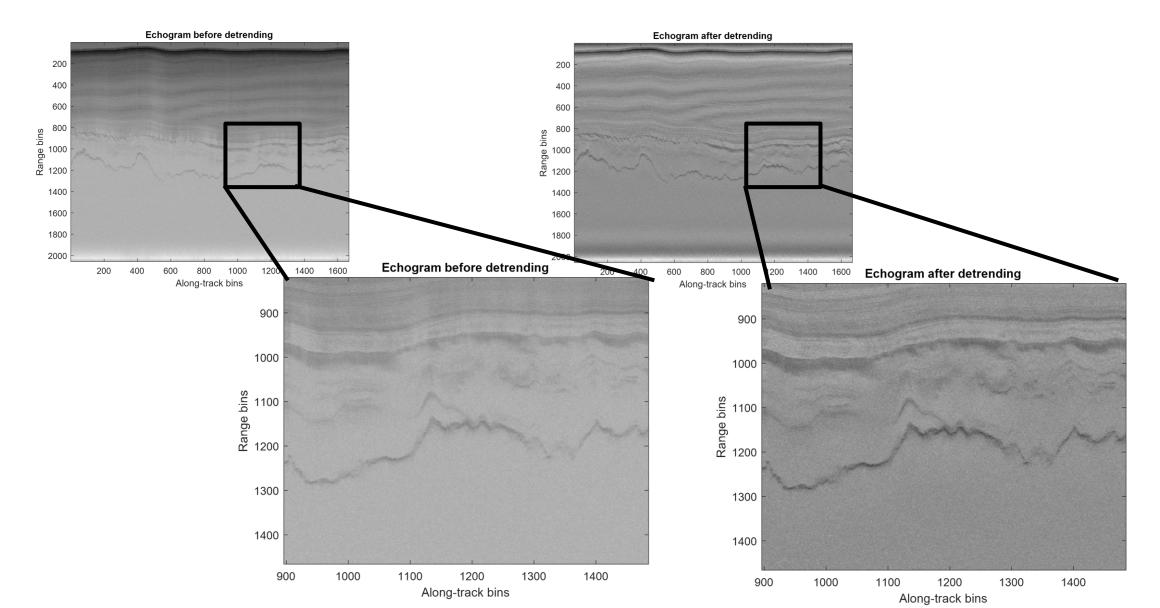
Signal Preprocessing using Wavelet Multiresolution Analysis

Results of multiresolution analysis :

- SNR of bedrock return is preserved as original signal ~27 dB
- 2. Used sym6 wavelet to preform the decomposition
- 3. Same wavelet decomposition method can be applied to all traces
- 4. Implement with Signal Multiresolution Analysis app <u>https://www.mathworks.com/help/wavelet/ref/signal</u> <u>multiresolutionanalyzer-app.html</u>
- 5. Automate the process by generating code directly from the app
- 6. Contrast of the seismic image improved

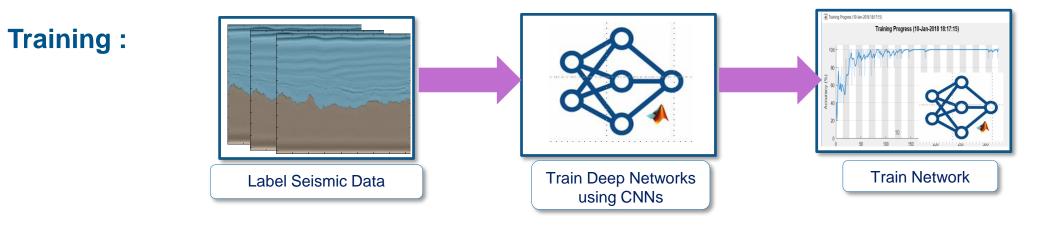


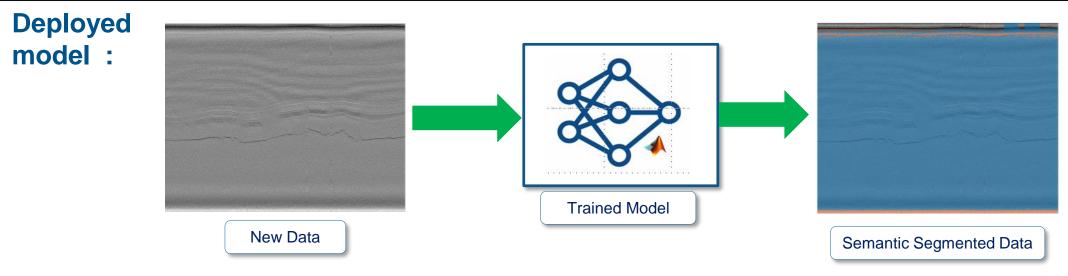
Signal Preprocessing using Wavelet Multiresolution Analysis Results of multiresolution analysis :



18

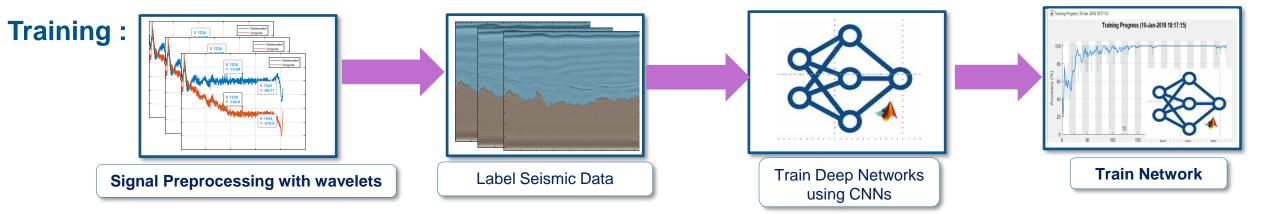
Developing Artificial Intelligence algorithm for automated labeling Traditional approach – Did not Work 🛞

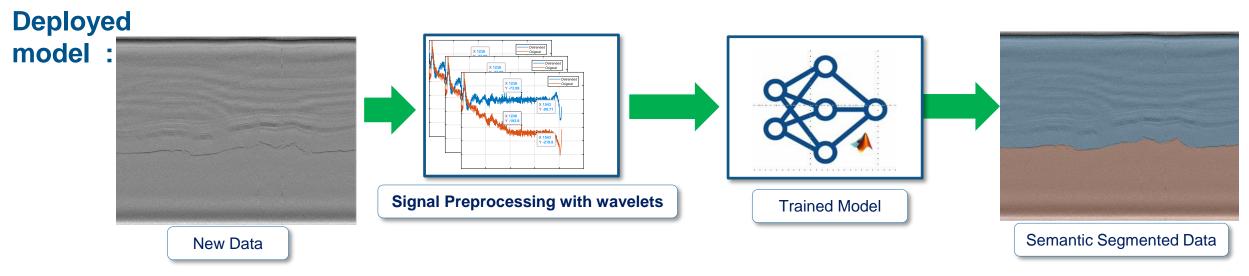




Global accuracy of trained model <10%

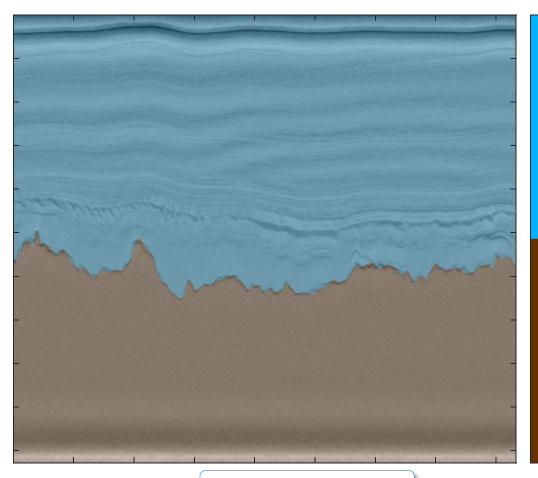
Developing Artificial Intelligence algorithm for automated labeling New Wavelets based approach: AI model works ©



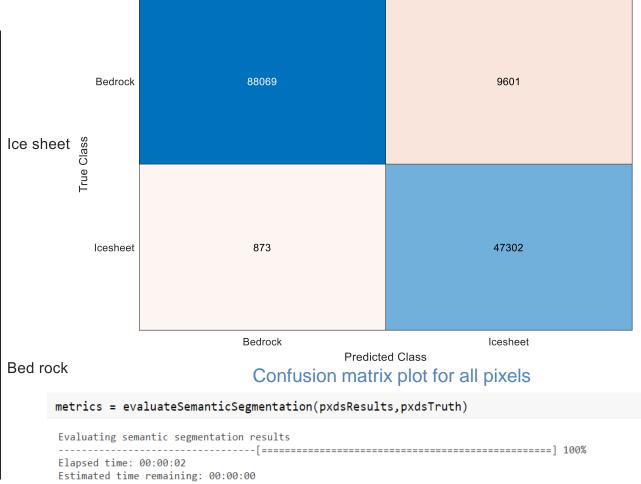


Global accuracy of trained model $\sim 97\%$

Overall result :



Semantic Segmented Data



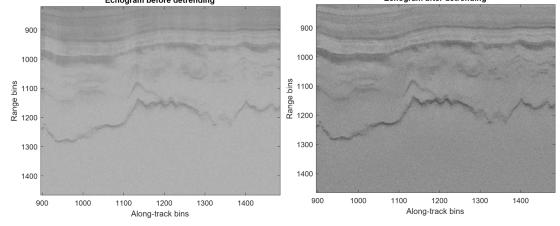
* Finalizing... Done.

* Data set metrics:

GlobalAccuracy	MeanAccuracy	MeanIoU	WeightedIoU	MeanBFScore	
0.90624	0.95085	0.61588	0.87529	0.40652	

Summary of case study:

- Signal preprocessing helped leverage the latest techniques in AI for seismic interpretation
- Seismic labeling automation helps increase productivity of seismic interpreter ~ >10x
- Overall SNR Improvement in signals :
 - Multiresolution analysis decreases the dynamic range, helps uncover features in low SNR scenarios



Improved features of icesheet layers and bed rock

Poster presented at AAPG ICE2019

Seismic Analysis with Wavelets and Deep Learning

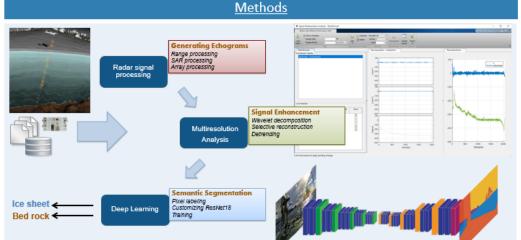
Akhilesh Mishra, Kirthi Devleker, Samvith Rao

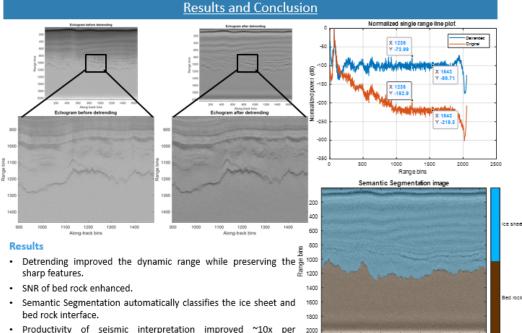
MathWorks

Abstract

Seismic Reflection analysis is the most common method to obtain subsurface information for reservoir characterization. However, seismic reflection is often distorted by complex salt bodies and other geological structures and its vertical resolution is often of the order of dozens of meters. In addition, analyzing large amounts of seismic data is a computationally challenging and time-consuming task. To circumvent these challenges, in this work, we present an approach using wavelets and deep learning to accelerate seismic analysis tasks.

We explore the use of wavelet transforms in conjunction with deep learning for seismic data analysis. The field studies were done on seismic data from Antarctica ice sheets, and we could clearly identify the interfaces between ice sheet and bed rock. Our recent results obtained from this approach are promising to distinguish among different facies, thereby increasing the productivity of the interpreter by ~10x.





Productivity of seismic interpretation improved ~10x per echogram.

<u>References</u>

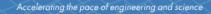
- CRESIS. 2018. MCORDS Data, Lawrence, Kansas, USA. Digital Media. <u>http://data.cresis.ku.edu/</u>
- Gogineni, S., J.-B. Yan, et al., "Bed topography of fast-flowing glaciers and fine-resolution mapping of internal layers", 26th IUGG General Assembly 2015, Prague, Czech Republic, 06/22-07/2, 2015.

200 400 600

800 1000 1200 1400 1600

Along-track bins

Percival, D. B., and A. T. Walden. Wavelet Methods for Time Series Analysis. Cambridge, UK: Cambridge University Press, 2000.

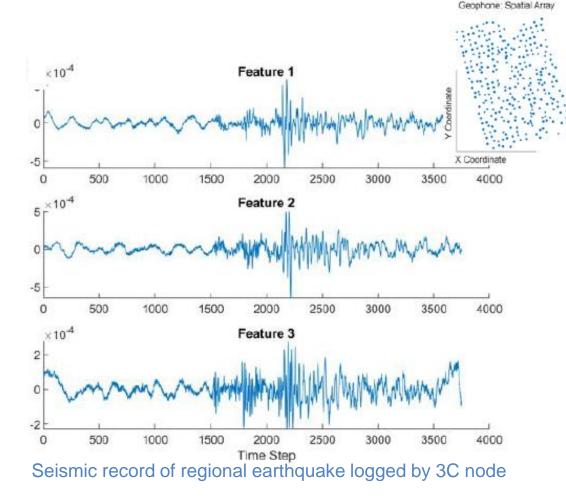


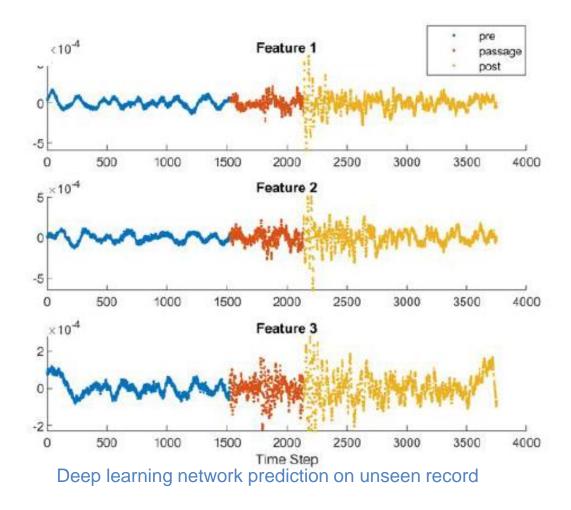
MathWorks[®]

Case Study II : Automated P- and S-wave arrival times detection in earthquake seismograms

Picking P- and S-waves arrival times with AI

Automation of labeling of P- and S-wave events



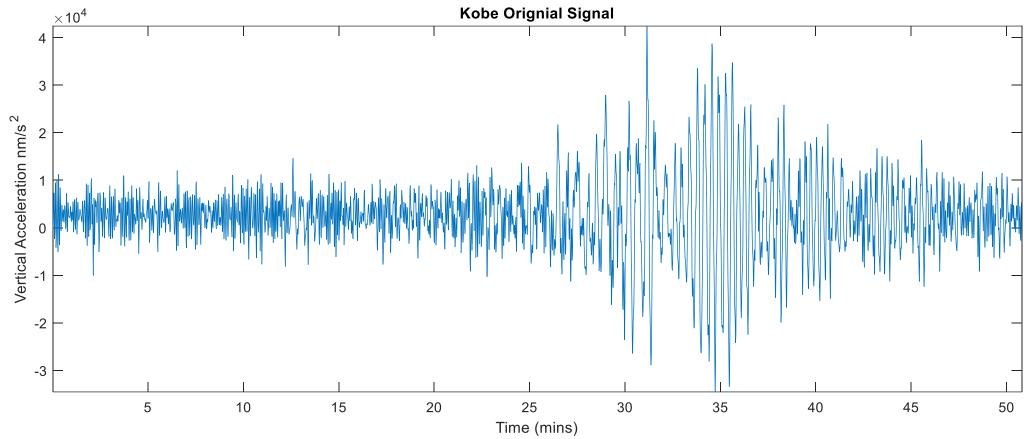


Source : Detecting P- and S-wave Arrivals with a Recurrent Neural Network

David Kirschner, Royal Dutch Shell; Nick Howes, Conor Daly, and Joyeeta Mukherjee, Mathworks; Junlun Li, University of Science and Technology of China (formerly w/ RDSA)

Case study data :

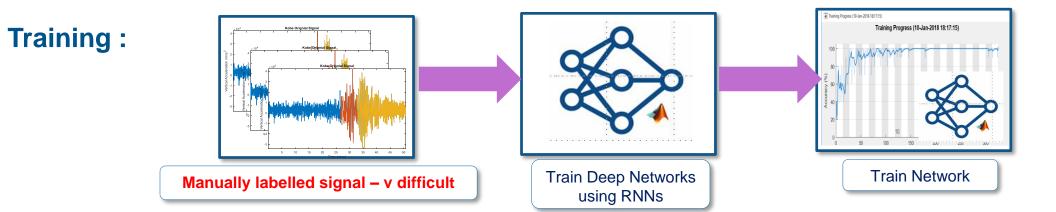
- Earthquake event occurred in Kobe, Japan January 17, 1995 (January 16 at 20:46 GMT)
- Goal: Develop AI model to automatically label the P- and S-waves

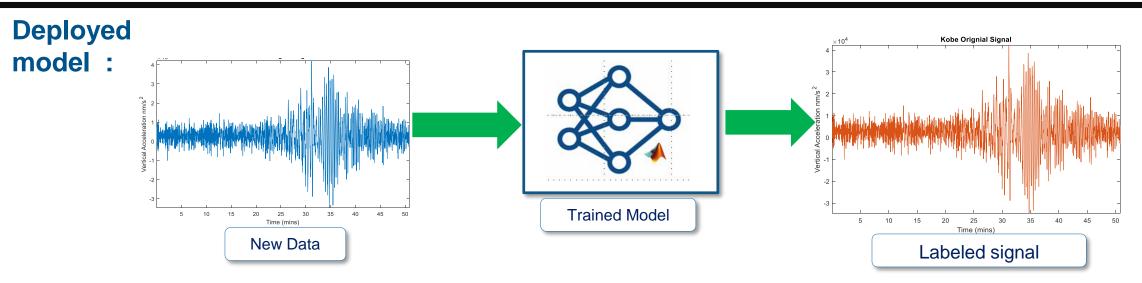


Data source : NOAA National Geophysical Data Center (2012): Natural Hazard Images Database (Event: January 1995 Hanshin-Awaji (Kobe), Japan Images). NOAA National Centers for Environmental Information. doi:10.7289/V5154F01

Developing AI algorithm for automated labeling

Traditional approach – Very challenging



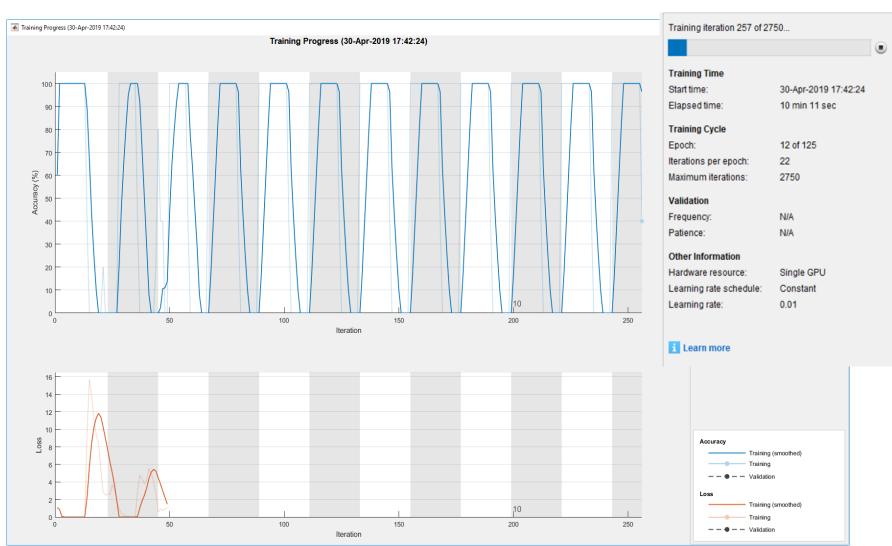


Global accuracy of trained model low

MathWorks[®]

Challenges with traditional AI approach

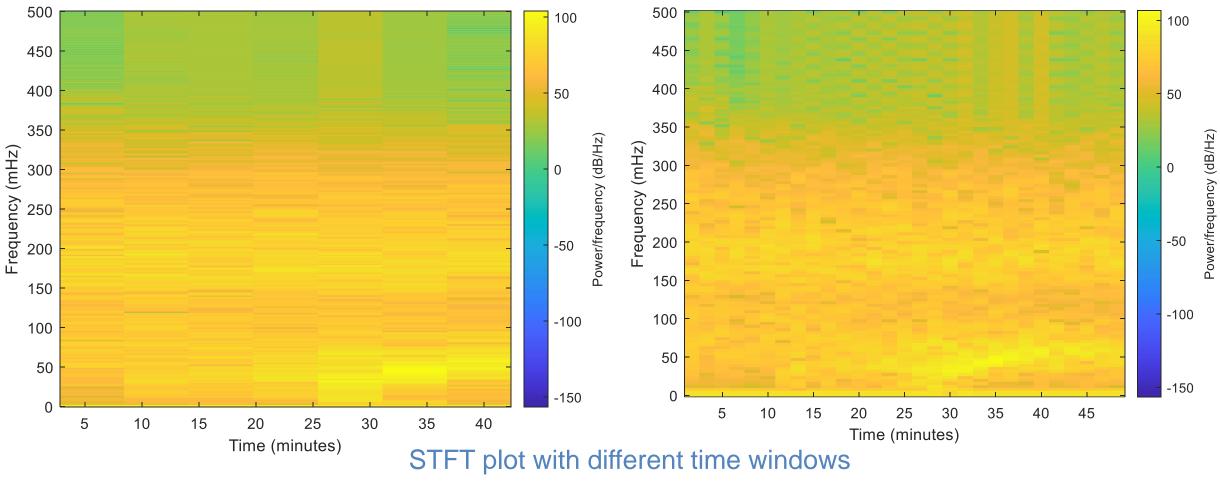
- Labeling the P- and S-waves arrival durations manually is challenging
 - Difficult to interpret time domain signal
- Seismic signals are highly non-stationary and features change quickly with time
- Recurrent Neural Networks for deep learning, e.g. LSTM (Long Short Term Memory) do not train on raw data



Sample training accuracy plot on non-stationary signals

Maybe we can localize the events in time and frequency space? Let's analyze these signals : Time-frequency method to separate out the localized events

Results of Short Time Fourier Transform (STFT)

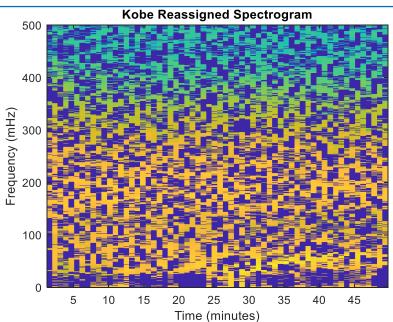


Poor resolution in time and frequency domains (8)

MathWorks[®]

Other time-frequency techniques

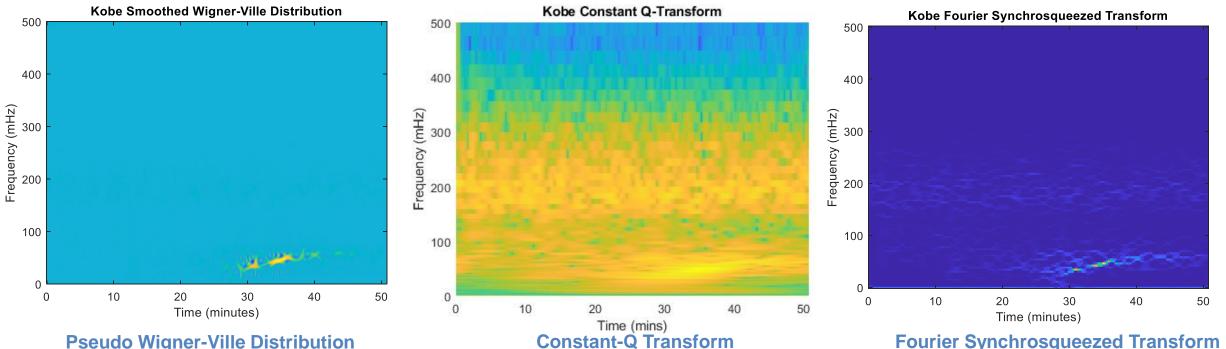
- Modified Fourier based methods also use sine/cosine waves
- Sine/cosine waves does not do a good job with seismic signals



MathWorks[®]

30

Reassigned Spectrogram

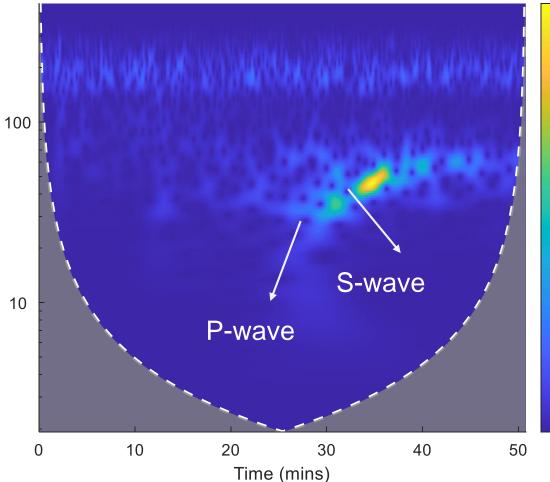


Wavelets again Continuous wavelet transform

Frequency (mHz)

>> cwt(kobe, fs)

Kobe Scalogram



Advantages :

2.5

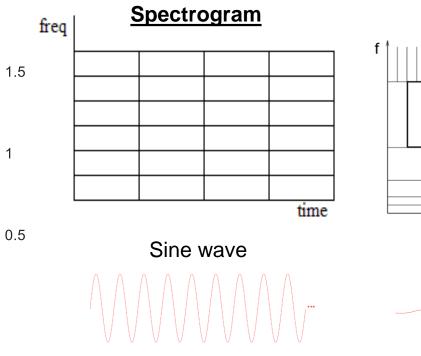
2

1

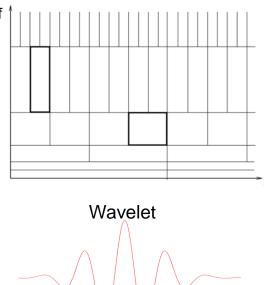
Variable sized windows (scaled wavelets) help capture features occurring at different scales

 $\times 10^4$ These scaled wavelets are shifted (translated) along the entire length and compared with the signal

High frequency events are better resolved in time and low frequency ٠ events are better resolved in frequency



Scalogram



MathWorks^{*}

 \times

Use wavelet multiresolution analysis to spilt the components

Decompose with db9 wavelet, reconstruct P-wave with Level 3, Level 5 and Approx.

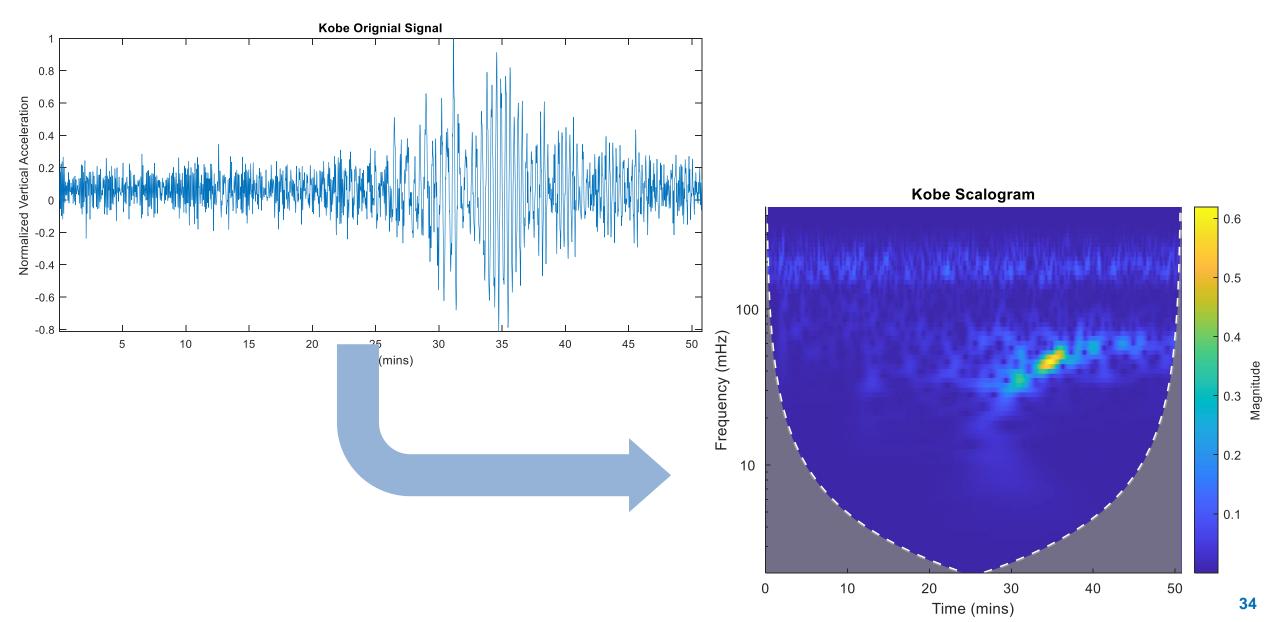
SIGNAL MULTIRESOLUTION ANALYZER		S 🔉 Scheme F 🔉 Font 🔚 🔏 🛍 🛱 🗇 🗇 🗗 🕐 👁
	Duplicate Delete Delete Level 5 DECOMPOSE DECOMPOSE LAYOUT EXPORT	
Data Browser	Decomposition - modwtmra	Reconstructions
Decomposed Signals		·P
kobeP - [modwtmra]	×10 ⁴	- ×10 ⁴
kobeS - [modwtmra]		5 Kobe 4 Kobe 3 Kobe 2 Kobe 1 Kobe
Level Selection		 III developments men tradicinal sectors and the sectors
Frequencies Relative Include Show (cycles/sample) Energy		
Level 1 0.25 - 0.5 1.18%	4	
Level 2 0.124 - 0.251 11.39%		
Level 3 0.0622 - 0.126 9.95%		-2 -
Level 4 0.0311 - 0.0628 59.53%	-4×10 ⁴	
Level 4 0.0311 - 0.0628 59.53%		-3
< >>	-4 0 500 1000 1500 2000 2500 3000 Samples	4 0 500 1000 1500 2000 2500 3000 Samples

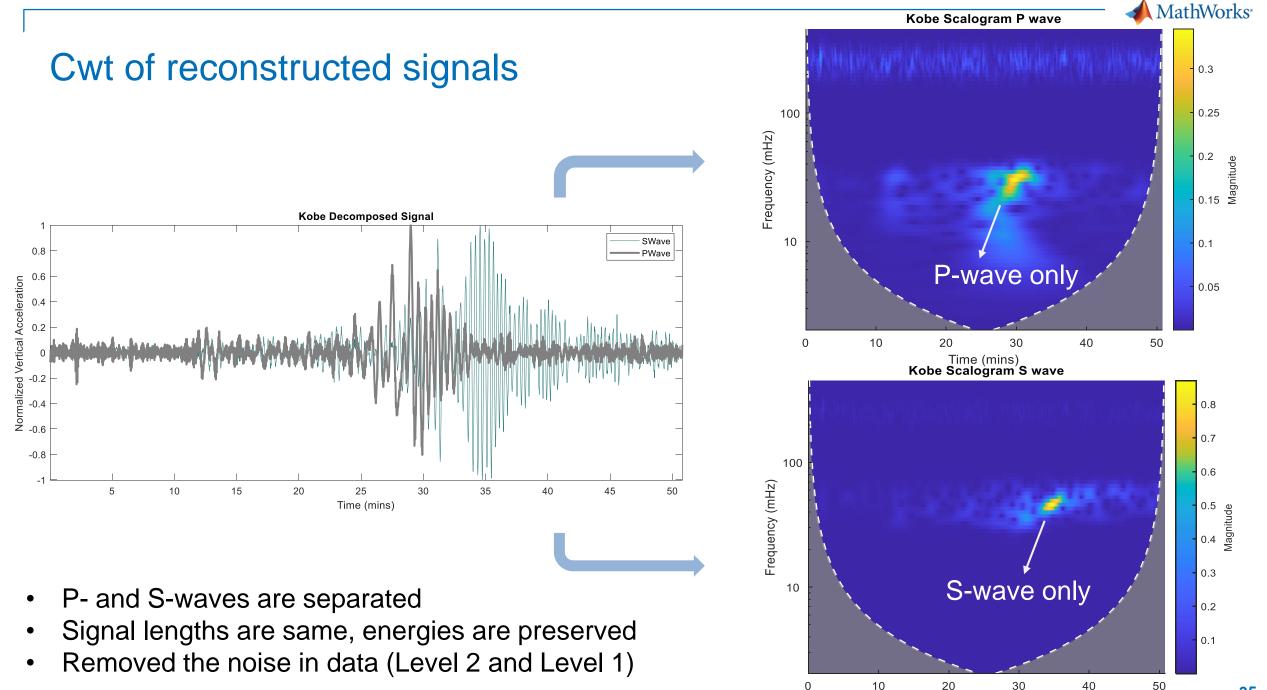
Use wavelet multiresolution analysis to spilt the components

Decompose with db9 wavelet, reconstruct R-wave with Level 4

SIGNAL MULTIRESOLUTION ANALYZER			S 🔉 Scheme F 🎝 Font 🔚 🔏 🛍 🛱 🗇 🔗 🚍 🕐
O Work In Samples O Work In Samples Sample Rate Sample Period TIME	· · ·	Duplicate Delete Level 5 DECOMPOSE DECOMPOSE Decompose Default Layout Export Layout EXPORT	
Data Browser	,	Decomposition - modwtmra	Reconstructions
Decomposed Signals			
kobeP - [modwtmra] kobeS - [modwtmra]		$ \begin{array}{c} $	5 × 10 ⁴ 4 kobe 3
.evel Selection			
evel Selection Frequencies (cycles/sample) Energy			
Frequencies Relativ			
Frequencies Relativ (cycles/sample) Energy			
Frequencies Relativ (cycles/sample) Energy Level 1 0.25 - 0.5 1.18%			
Frequencies (cycles/sample) Relativ Energy Level 1 0.25 - 0.5 1.18% Level 2 0.124 - 0.251 11.39%			
Frequencies (cycles/sample) Relativ Energy Level 1 0.25 - 0.5 1.18% Level 2 0.124 - 0.251 11.39% Level 3 0.0622 - 0.126 9.95%			

Original cwt



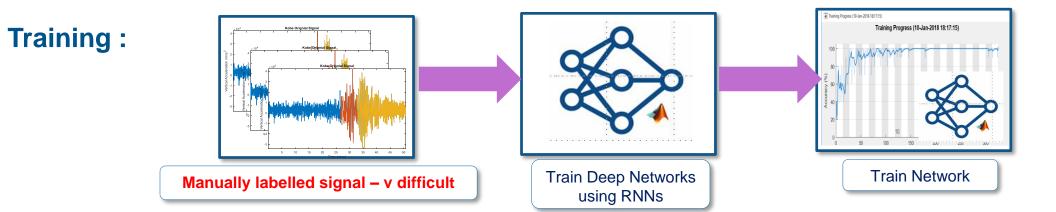


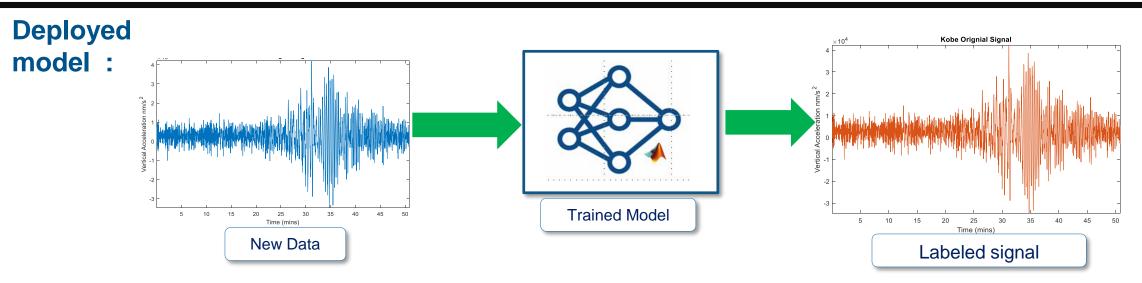
35

Time (mins)

Developing AI algorithm for automated labeling

Traditional approach – Very challenging

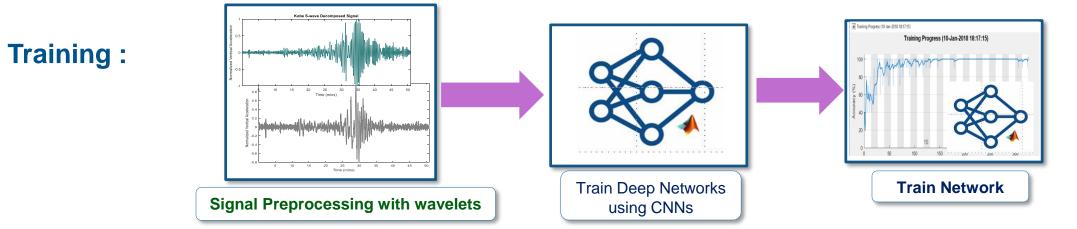


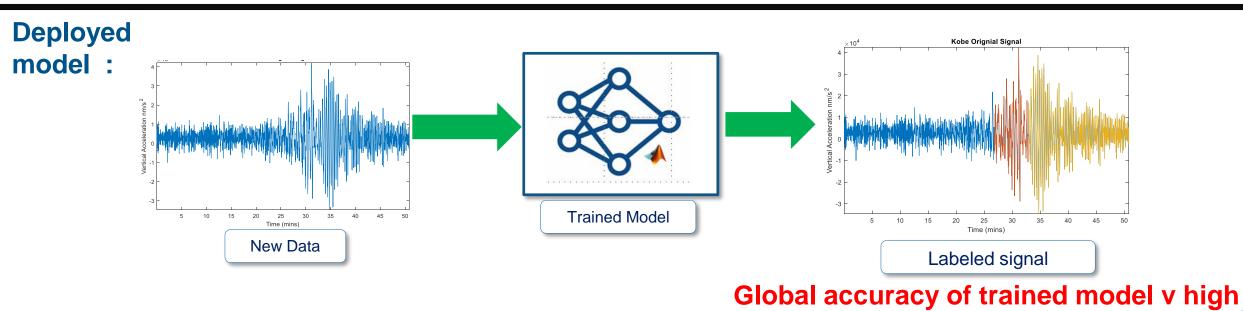


Global accuracy of trained model low

Developing AI algorithm for automated labeling

New Wavelets based approach: AI model works ③





Conclusion

- Use wavelets for analyzing real-world seismic signals
- Wavelet techniques such as multiresolution analysis can be very powerful for signal analysis and decomposition
- MATLAB provides single platform for signal analysis/preprocessing and developing and deploying AI models
 - Need not be signal processing expert.
 - Easy to use GUI-based apps to help you get started

What else in Wavelets ?

Discrete Multiresolution Analysis

Signal Analysis

wprec wpcoef wprcoef besttree wpspectrum

wavedec	1-D wavelet decomposition	qorthwavf
waverec	1-D wavelet reconstruction	dddtree2
dwtfilterbank	Discrete wavelet transform filter bank	idddtree2
dualtree	Kingsbury Q-shift 1-D dual-tree complex wavelet transform	dtfilters
uualtiee		dddtreecfs
idualtree	Kingsbury Q-shift 1-D inverse dual-tree complex wavelet transform	wrcoef2
haart	Haar 1-D wavelet transform	wpdec2
ihaart	Inverse 1-D Haar wavelet transform	wprec2
mlpt	Multiscale local 1-D polynomial transform	wpcoef
imlpt	Inverse multiscale local 1-D polynomial transform	wprcoef
dddtree	Dual-tree and double-density 1-D wavelet transform	besttree
idddtree	Inverse dual-tree and double-density 1-D wavelet transform	depo2ind
		ind2depo
mlptrecon	Reconstruct signal using inverse multiscale local 1-D polynomial trai	
wrcoef	Reconstruct single branch from 1-D wavelet coefficients	
dwpt	Multisignal 1-D wavelet packet transform	
idwpt	Multisignal 1-D inverse wavelet packet transform	
wpdec		

Machine Learning and Deep Learning

waveletScattering	Wavelet time scattering
waveletScattering2	Wavelet image scattering
cwtfilterbank	Continuous wavelet transform filter bank

Image Analysis
wavedec2
waverec2

appcoef2 detcoef2 haart2 ihaart2 dualtree2

idualtree2

qbiorthfilt

Filter Banks

Orthogonal and Biorthogonal Filter Banks

dwtfilterbank	Discrete wavelet transform filter bank	
biorwavf	Biorthogonal spline wavelet filter	
biorfilt	Biorthogonal wavelet filter set	
coifwavf	Coiflet wavelet filter	
dtfilters	Analysis and synthesis filters for oversampled wavelet filter ba	
dbaux	Daubechies wavelet filter computation	
dbwavf	Daubechies wavelet filter	
fejerkorovkin	Fejér-Korovkin wavelet filters	
orthfilt	Orthogonal wavelet filter set	
rbiowavf	Reverse biorthogonal spline wavelet filters	
qmf	Scaling and Wavelet Filter	

	2-D wavelet decomposition	
	2-D wavelet reconstruction	
	2-D approximation coefficients	
	2-D detail coefficients	
	2-D Haar wavelet transform	
	Inverse 2-D Haar wavelet transform	
	Kingsbury Q-shift 2-D dual-tree complex wavelet transform	m
	Kingsbury Q-shift 2-D inverse dual-tree complex wavelet	transform
	First-level dual-tree biorthogonal filters	
	Kingsbury Q-shift filters	
	Dual-tree and double-density 2-D wavelet transform	
	Inverse dual-tree and double-density 2-D wavelet transfor	rm
	Analysis and synthesis filters for oversampled wavelet filter	er banks
	Extract dual-tree/double-density wavelet coefficients or pr	rojections
	Reconstruct single branch from 2-D wavelet coefficients	
	Wavelet packet decomposition 2-D	
	Wavelet packet reconstruction 2-D	
Denoising	the transformer of	
	•	Mendet sizes I des size
wdenois		Wavelet signal denoising
wdenois		Wavelet image denoising
cmddeno		Interval-dependent denoising
mlptder		Denoise signal using multiscale local 1-D polynomial transform
wpdence	1p	Denoising or compression using wavelet packets
measerr	·	Quality metrics of signal or image approximation
wdencmp)	Denoising or compression
wnoises	it	Estimate noise of 1-D wavelet coefficients
wvarchg	3	Find variance change points
wnoise		Noisy wavelet test data
ddencmp		Default values for denoising or compression
thseled	t	Threshold selection for denoising
wpthcoe	ef	Wavelet packet coefficients thresholding
wthcoef	:	1-D wavelet coefficient thresholding
wthcoef	2	Wavelet coefficient thresholding 2-D
wthresh	1	Soft or hard thresholding

Compression

wcompress	True compression of images using wa-
wdencmp	Denoising or compression
wpdencmp	

MathWorks is your AI partner

The Platform

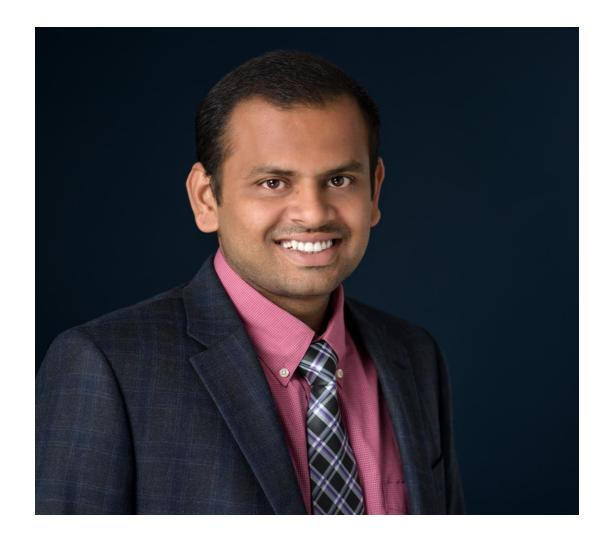
MATLAB, Simulink, and over 100 add-on products for specialized applications

Your People

Helping you build an agile workforce today and preparing tomorrow's engineers

From onboarding and implementation to solving advanced engineering challenges

Thank You!



Akhilesh Mishra Email : <u>amishra@mathworks.com</u>

LinkedIn : https://www.linkedin.com/in/akhile sh-mishra-b44b50121/